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PREFACE

This book is intended to serve as a text for the course in analysis that is usually
taken by advanced undergraduates or by first-year students who study mathe-
matics.

The present edition covers essentially the same topics as the second one,
with some additions, a few minor omissions, and considerable rearrangement. I
hope that these changes will make the material more accessible amd more attrac-
tive to the students who take such a course.

Experience has convinced me that it is pedagogically unsound (though
logically correct) to start off with the construction of the real numbers from the
rational ones. At the beginning, most students simply fail to appreciate the need
for doing this. Accordingly, the real number system 1s introduced as an ordered
field with the least-upper-bound property, and a few interesting applications of
this property are quickly made. However, Dedekind’s construction is not omit-
ted. It is now in an Appendix to Chapter 1, where it may be studied and enjoyed
whenever the time seems ripe.

The material on functions of several variables is almost completely re-
written, with many details filled in, and with more examples and more motiva-
tion. The proof of the inverse function theorem—-the key item in Chapter 9—is
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simplified by means of the fixed point theorem about contraction mappings.
Differential forms are discussed in much greater detail. Several applications of
Stokes’ theorem are included.

As regards other changes, the chapter on the Riemann-Stieltjes integral
has been trimmed a bit, a short do-it-yourself section on the gamma function
has been added to Chapter 8, and there is a large number of new exercises, most
of them with fairly detailed hints.

I have also included several references to articles appearing in the American
Mathematical Monthly and in Marhematics Magazine, in the hope that students
will develop the habit of looking into the journal literature. Most of these
references were kindly supplied by R. B. Burckel.

Over the years, many people, students as well as teachers, have sent me
corrections, criticisms, and other comments concerning the previous editions
of this book. 1 have appreciated these, and I take this opportunity to express
my sincere thanks to all who have written me.

WALTER RUDIN
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THE REAL AND COMPLEX NUMBER SYSTEMS

INTRODUCTION

A satisfactory discussion of the main concepts of analysis (such as convergence,
continuity, differentiation, and integration) must be based on an accurately
defined number concept. We shall not, however, enter into any discussion of
the axioms that govern the arithmetic of the integers, but assume familiarity
with the rational numbers (i.e., the numbers of the form m/n, where m and n
are integers and n # 0).

The rational number system is inadequate for many purposes, both as a
field and as an ordered set. (These terms will be defined in Secs. 1.6 and 1.12.)
For instance, there is no rational p such that p? =2. (We shall prove this
presently.) This leads to the introduction of so-called ‘‘irrational numbers”’
which are often written as infinite decimal expansions and are considered to be
““approximated’’ by the corresponding finite decimals. Thus the sequence

1,1.4,1.41,1.414,1.4142, . ..

“tends to \/ 2.”” But unless the irrational number \/ 2 has been clearly defined,
the question must arise: Just what is it that this sequence “‘tends to™’?
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This sort of question can be answered as soon as the so-called ‘‘real
number system’’ is constructed.

1.1 Example We now show that the equation

(1) pt=2

is not satisfied by any rational p. If there were such a p, we could write p = m/n
where m and n are integers that are not both even. Let us assume this is done.
Then (1) implies

(2) m? = 2n?,

This shows that m? is even. Hence n: is even (if m were odd, m? would be odd).
and so m? is divisible by 4. It follows that the right side of (2) is divisible by 4.
so that n? is even, which implies that n is even.

The assumption that (1) holds thus leads to the conclusion that both m
and n are even, contrary to our choicc of m and n. Hence (1) is impossible for
rational p.

We now examine this situation a little more closely. Let A4 be the set of
all positive rationals p such that p? < 2 and let B consist of all positive rationals
p such that p? > 2. We shall show that A contains no largest number and B con-
tains no smallest.

More explicitly, for every p in A we can find a rational g in 4 such that
p < g, and for every p in B we can find a rational ¢ in B such that g < p.

To do this, we associate with each rational p > 0 the number

pi—2 2p+2

3 = — )
) 9=p p+2 p+2
Then

2(p® - 2)
4 —22 = .
) 9 (p +2)?

If pis in A then p> —2 <0, (3) shows that ¢ > p, and (4) shows that
g’ <2. Thus g isin A.

If pisin B then p2 —2 > 0, (3) shows that 0 < g < p, and (4) shows that
g?> > 2. Thus g is in B.

1.2 Remark The purpose of the above discussion has been to show that the
rational number system has certain gaps, in spite of the fact that between any
two rationals there 1s another: If ¥ < s then r < (» + 5)/2 < s. The real number
system fills these gaps. This is the principal reason for the fundamental role
which it plays in analysis.
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In order to elucidate its structure, as well as that of the complex numbers,
we start with a brief discussion of the general concepts of ordered set and field.

Here is some of the standard set-theoretic terminology that will be used
throughout this book.

1.3 Definitions If 4 is any set (whose elements may be numbers or any other
objects), we write x € A to indicate that x is a member (or an element) of A.

If x is not a member of 4, we write: x ¢ A.

The set which contains no element will be called the empty set. If a set has
at least one element, it is called nonempty.

If A and B are sets, and if every element of 4 is an element of B, we say
that 4 is a subset of B, and write A < B, or B > 4. If, in addition, there is an
element of B which is not in A, then A is said to be a proper subset of B. Note
that 4 = A for every set A.

If Ac Band B < A, we write A = B. Otherwise A # B.

1.4 Definition Throughout Chap. 1, the set of all rational numbers will be
denoted by Q.

ORDERED SETS

1.5 Definition Let S be a set. Anorder on S is a relation, denoted by <, with
the following two properties:

(1) If x e S and y € S then one and only one of the statements

X<, X =), y<ux
1S true.

(1) Ifx,py, zeS if x<yand y<ux, then x <z

The statement ‘““x < y”’ may be read as ‘‘x is less than y”’ or ““x is smaller
than y” or “‘x precedes »”.

It is often convenient to write y > x in place of x < y.

The notation x < y indicates that x < y or x = y, without specifying which
of these two is to hold. In other words, x < y is the negation of x > y.

1.6 Definition An ordered set is a set S in which an order is defined.
For example, O is an ordered set if ¥ < 5 is defined to mean that s — ris a
positive rational number.

1.7 Definition Suppose S is an ordered set, and £ < S. If there exists a
p € S such that x < B for every x € E, we say that E is bounded above, and call
p an upper bound of E.

Lower bounds are defined in the same way (with > in place of <).
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1.8 Definition Suppose S is an ordered set, E = S, and E is bounded above.
Suppose there exists an a« € S with the following properties:

(i) ais an upper bound of E.
(ii)) If y < a then 7y is not an upper bound of E.

Then a is called the least upper bound of E [that there is at most one such
a is clear from (ii)] or the supremum of E, and we write

o =sup E.

The greatest lower bound, or infimum, of a set E which is bounded below
is defined in the same manner: The statement

o« =iInf E

means that « is a lower bound of E and that no B with B > a is a lower bound
of E.

1.9 Examples

(a) Consider the sets A and B of Example 1.1 as subsets of the ordered
set 0. The set A is bounded above. In fact, the upper bounds of A are
exactly the members of B. Since B contains no smallest member, A has
no least upper bound in Q.

Similarly, B is bounded below: The set of all lower bounds of B
consists of A and of all r e Q with r < 0. Since 4 has no lasgest member,
B has no greatest lower bound in Q.

(b) If a = sup E exists, then a may or may not be a member of E. For
instance, let E; be the set of all r € Q with r <0. Let E, be the set of all
re Q with r < 0. Then

sup E;, =sup E, =0,

andO0¢ E,,0€E,.
(c) Let E consist of all numbers 1/n, where n=1, 2, 3,.... Then
sup E =1, which is in E, and inf £ = 0, which is not in E.

1.10 Definition An ordered set S is said to have the least-upper-bound property
if the following is true:
If Ec S, E is not empty, and E is bounded above, then sup E exists in S.
Example 1.9(a) shows that Q does not have the least-upper-bound property.
We shall now show that there is a close relation between greatest lower
bounds and least upper bounds, and that every ordered set with the least-upper-
bound property also has the greatest-lower-bound property.
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1.11 Theorem Suppose S is an ordered set with the least-upper-bound property,
B < S, B is not empty, and B is bounded below. Let L be the set of all lower
bounds of B. Then
o =sup L
exists in S, and o = inf B.
In particular, inf B exists in S.

Proof Since B is bounded below, L is not empty. Since L consists of
exactly those y € S which satisfy the inequality y < x for every x € B, we
see that every x € B is an upper bound of L. Thus L is bounded above.
Our hypothesis about S implies therefore that L has a supremum in S;
call it a.

If y < a then (see Definition 1.8) y i1s not an upper bound of L,
hence y ¢ B. It follows that « < x for every x e B. Thus a € L.

If « < f then B ¢ L, since « is an upper bound of L.

We have shown that ae L but ¢ L if f > a. In other words, «
is a lower bound of B, but §is not if B > a. This means that a = inf B.

FIELDS

1.12 Definition A field is a set F with two operations, called addition and
multiplication, which satisfy the following so-called ‘‘field axioms’ (A), (M),
and (D):

(A) Axioms for addition

(A1) If xe F and y € F, then their sum x + yis in F.

(A2) Addition 1s commutative: x + y = y + x for all x, y € F.

(A3) Additionis associative: (x + y) +z=x+(y + z)forall x, y,ze F.
(A4) F contains an element O such that 0 + x = x for every x € F.

(AS) To every xe F corresponds an element —xe F such that

x+(—x)=0.

(M) Axioms for multiplication

(M1) If xe Fand y € F, then their product xy is in F.

(M2) Multiplication is commutative: xy = yx for all x, y € F.

(M3) Multiplication is associative: (xy)z = x(yz) for all x, y, z€e F.
(M4) F contains an element 1 # 0 such that 1x = x for every x € F.
(M5) If xe Fand x # 0 then there exists an element 1/x € F such that

x-(1/x)=1.
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(D) The distributive law

x(y +2)=xy + xz

holds for all x, y, z€ F.

1.13

1.14

Remarks

(a) One usually writes (in any field)

X
X—Y,=s X +y+ 2z xyz, x2, x>, 2x, 3x, . ..

in place of
1
x+(—y),x-(;),(x+y)+z, (xXy)z, xx, XXX, X + X, X + X + X, . . ..

(b) The field axioms clearly hold in Q, the set of all rational numbers, if
addition and multiplication have their customary meaning. Thus Q is a
field.

(c) Although it is not our purpose to study fields (or any other algebraic
structures) in detail, it is worthwhile to prove that some familiar properties
of O are consequences of the field axioms; once we do this, we will not
need to do it again for the real numbers and for the complex numbers.

Proposition The axioms for addition imply the following statements.

(@) If x+y=x+2ztheny=z.
b Ifx+y=xtheny=0.
(¢) If x+y=0theny= —x.
d) —-(=x)=x.

Statement (a) is a cancellation law. Note that (b) asserts the uniqueness

of the element whose existence i1s assumed in (A4), and that (¢) does the same
for (A5).

Proof If x + y = x + z, the axioms (A) give

y=0+y=(—x+x)+y=—-x+((x+y)
=—x+(x+2z2)=(—x+x)+2z=0+z=2z.

This proves (a). Take z =0 in (a) to obtain (b). Take z= —x in (a) to
obtain (¢).
Since —x + x =0, (¢) (with —x in place of x) gives (d).
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1.15 Proposition The axioms for multiplication imply the following statements.

(@) If x#0 and xy = xz then y = z.
(b)) If x#0and xy = x theny = 1.
(c) If x#0and xy =1 theny = 1/x.
d) If x+# 0 then 1/(1/x) = x.

The proof is so similar to that of Proposition 1.14 that we omit it.

1.16 Proposition The field axioms imply the following statements, for any x, y,
zeF.

(@) Ox=0.

(b) If x #0and y #0 then xy # 0.

() (=x)y = —(xy) =x(—y).

d) (=x)(=y)=xy.

Proof Ox + Ox = (0 + O)x = Ox. Hence 1.14(b) implies that Ox = 0, and

(a) holds.
Next, assume x # 0, y # 0, but xy = 0. Then (a) gives

- ()0~ G) -

a contradiction. Thus (b) holds.
The first equality in (¢) comes from

(=x)y+xy=(—x+x)y=0y=0,

combined with 1.14(c); the other half of (¢) is proved in the same way.
Finally,

(=x)(=p)= —[x(=»)]= —[-Cp)] = xy
by (¢) and 1.14(d).

1.17 Definition An ordered field is a field F which is also an ordered set, such
that

(1) x+y<x+zifx,y,zeFandy <z,
(M) xy>0ifxeF,yeF,x>0,and y > 0.

If x > 0, we call x positive; if x <0, x is negative.

For example, C is an ordered field.

All the familiar rules for working with inequalities apply in every ordered
field: Multiplication by positive [negative] quantities preserves [reverses] in-
equalities, no square is negative, etc. The following proposition lists some of
these.
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1.18 Proposition The following statements are true in every ordered field.

(@ If x>0 then —x <0, and vice versa.

(b) If x>0andy < z then xy <xz.

(¢) If x<O0andy < z then xy > xz.

(d) If x # 0 then x* > 0. In particular, 1 > 0.
(e) If0<x<ythen0<l1/y<l1/x.

Proof

(@ Ifx>0then0= —-x+x> —x+0, so that —x <0. If x <O then
0= —x+x< —x+0, so that —x > 0. This proves (a).

(b) Since z>y, we have z—y >y —y =0, hence x(z —y) >0, and
therefore

xz2=x(z—y)+xy>0+ xy=x).
(¢) By (a), (b), and Proposition 1.16(c),
—[x(z =] =(=x)z-y) >0,

so that x(z — y) <0, hence xz < xy.

(d) If x>0, part (ii) of Definition 1.17 gives x? > 0. If x <0, then
—x >0, hence (—x)2>0. But x?=(—x)? by Proposition 1.16(d).
Since 1 =12, 1> 0.

() Ify>0andv<0,thenyv <0. Buty- -(1/y)=1>0. Hence 1/y > 0.
Likewise, 1/x > 0. If we multiply both sides of the inequality x < y by
the positive quantity (1/x)(1/y), we obtain 1/y < 1/x.

THE REAL FIELD

We now state the existence theorem which is the core of this chapter.

1.19 Theorem There exists an ordered field R which has the least-upper-bound

property.
Moreover, R contains Q as a subfield.

The second statement means that QO < R and that the operations of
addition and multiplication in R, when applied to members of Q, coincide with
the usual operations on rational numbers; also, the positive rational numbers
are positive elements of R.

The members of R are called real numbers.

The proof of Theorem 1.19 is rather long and a bit tedious and is therefore
presented in an Appendix to Chap. 1. The proof actually constructs R from Q.
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The next theorem could be extracted from this construction with very
little extra effort. However, we prefer to derive it from Theorem 1.19 since this
provides a good illustration of what one can do with the least-upper-bound

property.

1.20 Theorem

(@) If xeR,yeR, and x > 0, then there is a positive integer n such that
nx > y.
(b) Ifxe R,ye R,and x <y, then there existsap € Q suchthat x < p < y.

Part (a) is usually referred to as the archimedean property of R. Part (b)
may be stated by saying that Q is dense in R: Between any two real numbers
there is a rational one.

Proof

(a) Let A be the set of all nx, where n runs through the positive in.cgers.
If (a) were false, then y would be an upper bound of 4. But then A4 has a
least upper bound in R. Put x =sup 4. Since x >0, a — x < a, and
o — x is not an upper bound of 4. Hence x — x < mx for some positive
integer m. But then a < (m + 1)x € A, which is impossible, since a is an

upper bound of A.
(b) Since x <y, we have y — x > 0, and (a) furnishes a positive integer

n such that
n(y — x) > 1.

Apply (a) again, to obtain positive integers m, and m, such that m; > nx,
m, > —nx. Then

—m, < nx < my.
Hence there is an integer m (with —m, < m < m,) such that
m-—1<nx <m.
If we combine these inequalities, we obtain
nx <m<1++nx <ny.

Since n > 0, it follows that
xX<—<y.

This proves (b), with p = m/n.
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We shall now prove the existence of nth roots of positive reals. This
proof will show how the difficulty pointed out in the Introduction (irration-

ality of ./2) can be handled in R.

1.21 Theorem For every real x >0 and every integer n >0 there is one
and only one real y such that y" = x.

This number y is written {'/x or x!/,

Proof That there is at most one such y is clear, since 0 < y, < y, implies
Y1 <):.

Let E be the set consisting of all positive real numbers ¢ such that
" < x.

If t=x/(1 +x)then 0 <¢<1. Hence t"<t < x. Thus t € E, and
E is not empty.

Ift>1+xthent">1t>x,sothat t¢ E. Thus 1 + x is an upper
bound of E.

Hence Theorem 1.19 implies the existence of
y =sup E.

To prove that " = x we will show that each of the inequalities )" < x
and " > x leads to a contradiction.
The identity 6" —a"= (b —a)d" ' +b6" a4+ -+ +a"" ") yields
the inequality
b"—a" < (b — anb"™!
when 0 < a < b.
Assume )" < x. Choose & so that0) <h < 1 and

x=)

h < .
n(y +1)"!

Puta=y, b=y + h Then
Y+ h" =y <hn(y +h)" ' <hn(y +1) ' <x—)"

Thus (y + h)" < x, and y + he E.- Since y + h > y, this contradicts the
fact that y is an upper bound of E.
Assume )" > x. Put
y'—x
nyn—l
Then 0 <k < y. If t > y — k, we conclude that
YV —1"<y'"—(y =k <kny" ' =y" — x.

Thus " > x, and 7 ¢ £. It follows that y — k is an upper bound of E.

k =
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But y — k < y, which contradicts the fact that y is the least upper bound
of E.

Hence " = x, and the proof is complete.

Corollary If a and b are positive real numbers and n is a positive integer, then

(ab)l/n — a”"b‘/".
Proof Put o =a'’", = b!". Then
ab = o«"p" = (af5)",

since multiplication is commutative. [Axiom (M2) in Definition 1.12.]

The uniqueness assertion of Theorem 1.21 shows therefore that

(ab)l/n — aﬁ — a'/"b”".

1.22 Decimals We conclude this section by pointing out the relation between
real numbers and decimals.

Let x > O be real. Let n, be the largest integer such that ny, < x. (Note that
the existence of n, depends on the archimedean property of R.) Having chosen

Ho, Ny, ....M_y, let n, be the largest integer such that
bty T <
n — .« o s + — < X.
° 710 10¥

Let £ be the set of these numbers

n n
(5) no+1—z—)+-~+1—(;‘,-‘ k=0,1,2,..)).

Then x == sup E. The decimal expansion of x is
(6) g NN, N3 " ",

Conversely, for any infinite decimal (6) the set E of numbers (5) is bounded
above. and (6) is the decimal expansion of sup E.

Since we shall never use decimals, we do not enter into a detailed
discussion.

THE EXTENDED REAL NUMBER SYSTEM

1.23 Definition The extended real number system consists of the real field R
and two symbols. + o0 and —oc. We preserve the original order in R, and
define

—00 < X<+00
for every x € R.
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It is then clear that + oo is an upper bound of every subset of the extended
real number system, and that every nonempty subset has a least upper bound.
If, for example, E is a nonempty set of real numbers which is not bounded
above in R, then sup E = + o0 in the extended real number system.

Exactly the same remarks apply to lower bounds.

The extended real number system does not form a field, but it is customary
to make the following conventions:

(a) If x is real then

X X
X + 00 = + 00, X — = — 00, = ——=0.
+00 —o00

() If x>0then x - (+0)= +00, x*(—00)= —o00.
(c) Ifx<Othenx-(+0)= —00, x*(—00) = +o00.

When it is desired to make the distinction between real numbers on the
one hand and the symbols + 00 and — oo on the other quite explicit, the former
are called finite.

THE COMPLEX FIELD

1.24 Definition A complex number is an ordered pair (a, b) of real numbers.
““Ordered’’ means that (a, b) and (b, a) are regarded as distinct if a # b.

Let x = (a, b), y = (¢, d) be two complex numbers. We write x = y if and
only if a=c and b =d. (Note that this definition is not entirely superfluous;
think of equality of rational numbers, represented as quotients of integers.) We
define

x+y=(@+cb+d),

xy = (ac — ba, ad + bc).

1.25 Theorem These definitions of addition and multiplication turn the set of
all complex numbers into a field, with (0, 0) and (1, 0) in the role of 0 and 1.

Proof We simply verify the field axioms, as listed in Definition 1.12.
(Of course, we use the field structure of R.)

Let x = (a, b), y = (¢, d), z = (e, f).
(A1) is clear.
(A2) x+y=(a+c,b+d)=(c+a,d+b)=y+ x.
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(A3) (x+p)+z=@+c,b+d+ (e))
=@+c+eb+d+f)
=@b)+(c+e,d+f)=x+(+2).
(Ad) x+0=(a,b)+ (0,0)=(a,bd) =x.
(AS5) Put —x =(—a, —b). Then x + (—x) =(0,0) =0.
(M1) is clear.
(M2) xy = (ac — bd, ad + bc) = (ca — db, da + cb) = yx.
(M3) (xy)z =(ac — bd, ad + bc)(e, f)
= (ace — bde — adf — bcf, acf — bdf + ade + bce)
= (a, b)(ce — df, cf + de) = x(yz).
(M4) 1x=(1,0)a, b) = (a, b) = x.
(MS) If x # 0 then (a, b) # (0, 0), which means that at least one of the
real numbers a, b is different from 0. Hence a®> + b%? > 0, by Proposition
1.18(d), and we can define

l__( a —b )
x \a® +b¥ a®+b?
Then

a -b

]
x a* + b’ a® + b?

X
(D) x(y +z)=(a,b)c+e,d+[)
= (ac + ae — bd — bf, ad + af + bc + be)
= (ac — bd, ad + bc) + (ae — bf, af + be)

= Xy + Xz.

x - — = (a, b) =(1,0)=1.
( )

Theorem For any real nunmibers a and b we have
a,0) + (5,0 =(a+b0), (a 0)d,0)=(ad,0).

The proof is trivial.

Theorem 1.26 shows that the complex numbers of the form (a, 0) have the

same arithmetic properties as the corresponding real numbers a. We can there-
fore identify (a, 0) with a. This identification gives us the real field as a subfield
of the complex field.

The reader may have noticed that we have defined the complex numbers

without any reference to the mysterious square root of —1. We now show that
the notation (a, b) is equivalent to the more customary a + bi.

1.27 Definition i = (0, 1).
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128 Theorem i%= —1.
Proof i2=(0,1)0,1)=(—1,0)= —1.

1.29 Theorem If a and b are real, then (a, b) = a + bi.

Proof
a + bi = (a,0) + (b, 0)(0, 1)
= (a, 0) + (0, b) = (a, b).

1.30 Definition 1If a, b are real and z = a + bi, then the complex number
Z = a — bi is called the conjugate of z. The numbers a and b are the real part

and the imaginary part of z, respectively.
We shall occasionally write

a = Re(2), b = Im(z2).

1.31 Theorem If z and w are complex, then

@ z+w=zZ+w,

b) zw=2z"w,

(c) z+zZ=2Re(2),z—-2z=2iIm(2),

(d) zzZ is real and positive (except when z = ().

Proof (a), (b), and (c) are quite trivial. To prove (d), write z =a + bi,
and note that zZ = a? + b>.

1.32 Definition If z is a complex number, its absolute value |z| is the non-
negative square root of zZ; that is, |z| = (zz2)'/2.

The existence (and uniqueness) of |z| follows from Theorem 1.21 and
part (d) of Theorem 1.31.

Note that when x is real, then X = x, hence | x| =\/x2. Thus |x| = x
ifx>0, |x]| = —-xif x <O.

1.33 Theorem Let z and w be complex numbers. Then

(@ |z| >0 unless z=0, |0| =0,

b |z| = |z|,
© lzwl = |21 |wl,
(d) |Rez|<|z|,

€ |z+w|<]|z| +|w]
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Proof (a) and (b) are trivial. Put z=a + bi, w=c¢ + di, with a, b, ¢, d
real. Then
|zw|? = (ac — bd)? + (ad + bc)? = (@* + b*)(c? + d?) = |z|?|w|?

or |zw|? = (|z| |w|)®. Now (c) follows from the uniqueness assertion of
Theorem 1.21.
To prove (d), note that a®> < a*? + b2, hence

la| =/a* < Ja* + b*.
To prove (e), note that zw is the conjugate of zw, so that zw + zw =
2 Re (zw). Hence
|z+w|2 =+ W)EZ+ W) =2zZ + zWw + Zw + ww
z|? + 2 Re (zw) + |w|?
< |z|* +2|zw| + |w]|?
212+ 2|z| |w| + [w|2=(|z] + |w])2.

Now (e) follows by taking square roots.

1.34 Notation If x,,..., x, are complex numbers, we write

n
xl +x2+ e +x,,=2xj
Jj=1

We conclude this section with an important inequality, usually known as
the Schwarz inequality.

n

1.35 Theorem Ifa,,...,a,andb,, ..., b, are complex numbers, then
2 n n
Y. a;b;| <) la? ) |5;]%
j=1 ji=1 j=1

Proof Put A =ZX|q;|? B=ZX|b;|? C = Za;b; (in all sums in this proof,

j runs over the values 1, ..., n). If B=0, then b, = -+ = b, = 0, and the
conclusion is trivial. Assume therefore that B > 0. By Theorem 1.31 we
have

Y |Ba; — Cb;|* = Y. (Ba; — Cb)(Bd; — Cb)
=B*} |a;|* —BC} a;b;— BC}Y a;b; + |C|* } |4;|*
= B*’4A — B|C|?
= B(AB — | C|?).
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Since each term in the first sum is nonnegative, we see that
B(AB - |C|* =0.
Since B > 0, it follows that AB — |C|? > 0. This is the desired inequality.

EUCLIDEAN SPACES

1.36 Definitions For each positive integer k, let R* be the set of all ordered
k-tuples
X = (Xg, X5, 00y Xx),

where x,, ..., x; are real numbers, called the coordinates of x. The elements of
R* are called points, or vectors, especially when k > 1. We shall denote vectors
by boldfaced letters. If y =(y,, ..., ») and if « is a real number, put

X+yY=0; +Y .- X+ Vi)

ax = (axXq, ..., 0tXy)

so that x + y e R* and ax e R*. This defines addition of vectors, as well as
multiplication of a vector by a real number (a scalar). These two operations
satisfy the commutative, associative, and distributive laws (the proof is trivial,
in view of the analogous laws for the real numbers) and make R* into a vector
space over the real field. The zero element of R* (sometimes called the origin or
the null vector) is the point 0, all of whose coordinates are 0.

We also define the so-called ‘‘inner product’ (or scalar product) of x and

y by )
X'y =2 Xy
and the norm of x by

x| = x-97 = (1)

1

The structure now defined (the vector space R* with the above inner
product and norm) is called euclidean k-space.

1.37 Theorem Suppose X,y, z € R, and o is real. Then

(@ |x|=0;
(b) |x| =0ifandonlyif x =0,
© |ox| =|af|x];

@ |x-y| <|x|lyl;
@ Ix+y|<I|x|+|yl;
() |x—z| < |x=y| +|y—z|
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Proof (a), (b), and (c) are obvious, and (d) is an immediate consequence
of the Schwarz inequality. By (d) we have

x+y|*=Cx+y) x+y)
=X'X+2X'y+y'y
< |x|* +2(x||y| + |y|*
= (x| + 13175,

so that (e) is ptoved. Finally, (f) follows from (e) if we replace x by
Xx—yandybyy-—z.

1.38 Remarks Theorem 1.37 (a), (b), and (f) will allow us (see Chap. 2) to
regard R* as a metric space.

R! (the set of all real numbers) is usually called the line, or the real line.
Likewise, R? is called the plane, or the complex plane (compare Definitions 1.24
and 1.36). In these two cases the norm is just the absolute value of the corre-
sponding real or complex number.

APPENDIX

Theorem 1.19 will be proved in this appendix by constructing R from Q. We
shall divide the construction into several steps.

Step 1 The members of R will be certain subsets of Q, called cuts. A cut is,
by definition, any set « = Q with the following three properties.

(I) ais not empty, o # Q.
(I) Ifpea,qge Q, and g < p, then g € a.
(IIT) If p e a, then p < r for some r € a.

The letters p, g, r, ... will always denote rational numbers, and «, 8, y, ...
will denote cuts.

Note that (I11) simply says that « has no largest member; (II) implies two
facts which will be used freely:

If pe a and g ¢ o then p < g.
If ré¢ « and r < s then s ¢ a.

Step 2 Define “a < f” to mean: « is a proper subset of B.

Let us check that this meets the requirements of Definition 1.5.

If x < B and B < y it is clear that « < y. (A proper subset of a proper sub-
set i1s a proper subset.) It is also clear that at most one of the three relations

a <p, ox=p, p<a
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can hold for any pair a2, 8. To show that at least one holds, assume that the
first two fail. Then a is not a subset of B. Hence there is a p e « with p ¢ f5.
If g e B, it follows that ¢ < p (since p ¢ ), hence g e a, by (II). Thus f < a.
Since f # a, we conclude: f} < a.

Thus R is now an ordered set.

Step 3 The ordered set R has the least-upper-bound property.

To prove this, let 4 be a nonempty subset of R, and assume that ff € R
is an upper bound of 4. Define y to be the union of allx € A. In other words,
p e vy if and only if p € 2 for some a € A. We shall prove that ye R and that
y = sup A.

Since A is not empty, there exists an ¢, € A. This %, I1s not empty. Since
oo < ¥, ¥ I1s not empty. Next, 3 < ff (since x < 3 for every a« € A), and therefore
vy # Q. Thus y satisfies property (I). To prove (I1) and (II1), pick p € y. Then
p € «, for some o, € A. If g < p, then q € a,, hence q € y; ihis proves (II). If
r € a, 1s so chosen that r > p, we sece that r e y (since «, < y), and therefore 7y
satisfies (111).

Thus y € R.

It is clear that o < 7 fer every a € 4.

Suppose 0 < y. Then there is an s€ y and that s¢ d. Since s€y, s€a
for some x € 4. Hence o < %, and 0 is not an upper bound of A.

This gives the desired result: y = sup A.

Step4 Ifaxe Rand ff € R we define a + 8 to be the set of all sums r + s, where
reoand s e fi.
We define 0* to be the set of all negative rational numbers. It is clear that
0* is a cut. We verify that the axioms for addition (see Definition 1.12) hold in
R, with 0* playing the role of (.
(Al) We have to show that a + ff is a cut. It is clear that a + f is a
nonempty subset of Q. Take r'é¢a, s"¢ f. Then r' +s" > r + s for all
choices of rea, seff. Thus r' +s ¢ a + B. It follows that « + B has
property (I).

Pick pea+ B. Then p=r+s, with rea, se . If g <p, then
gq—s<r, so gq—sex, and g=(q—s)+sea+ 5. Thus (Il) holds.
Choose rea sothat t >r. Thenp<t+sand ¢t +sea+ . Thus (111)
holds.

(A2) o + fBisthesetofallr + s, withrea, s e . Bythe same definition,
B+ ais the set of all s + . Since r + s=s5+r forall re Q, se O, we
have o« + B = + «.

(A3) As above, this follows from the associative law in Q.

(A4) IfreaandseO* thenr + s<r, hencer + sea. Thus a + 0* c q.
To obtain the opposite inclusion, pick p € a, and pick re «, r > p. Then
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p—re0* and p=r+(p—r)ea+0* Thus « c a + 0*. We conclude
that o + 0* = «.

(AS) Fix ae R. Let B be the set of all p with the following property:

There exists r > 0 such that —p — r ¢ a.

In other words, some rational number smaller than —p fails to
be in a.

We show that B € R and that o + f§ = 0*.

Ifs¢aand p=—s—1,then —p — 1 ¢ a, hence pe . So B is not
empty. If gea,then —g ¢ . So f§ # Q. Hence f satisfies (I).

Pick pef, and pick r >0, so that —p —ré¢oa. If g <p, then
—q—r>—p—r, hence —q—r¢a. Thus gef, and (II) holds. Put
t=p+(r/2). Then t>p, and —t —(r/2)= —p—r¢ a, so that tef.
Hence f satisfies (I11).

We have proved that 8 € R.

If reaand se ff, then —s ¢ «, hence r < —s, r + s <0. Thus
a + B < 0*,

To prove the opposite inclusion, pick v € 0*, put w = —p/2. Then
w > 0, and there is an integer n such that nw € a but (n + 1)w ¢ «. (Note
that this depends on the fact that Q has the archimedean property!) Put
p=—(nm+ 2w. Then pe f, since —p —w ¢ x, and

v=nw+pea+ f.
Thus 0* < a + f.
We conclude that o + f = 0*.
This f will of course be denoted by — .

Step S Having proved that the addition defined in Step 4 satisfies Axioms (A)
of Definition 1.12, it follows that Proposition 1.14 is valid in R, and we can
prove one of the requirements of Definition 1.17:

Ifa, B, yER and f <y, then o + < ot + 7.

Indeed, it is obvious from the definition of + in Rthata + fca + y; if
we had « + f = « + y, the cancellation law (Proposition 1.14) would imply
p=r.

It also follows that & > 0* if and only if —a < 0*.

Step 6 Multiplication is a little more bothersome than addition in the present
context, since products of negative rationals are positive. For this reason we
confine ourselves first to R*, the set of all « € R with « > 0*.

If e R* and B e R™, we define «B to be the set of all p such that p < rs
for some choice of rea, se 8, ¥ > 0, s > 0.

We define 1* to be the set of all ¢ < 1.
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Then the axioms (M) and (D) of Definition 1.12 hold, with R in place of F,

and with 1* in the role of 1.
The proofs are so similar to the ones given in detail in Step 4 that we omit

them.
Note, in particular, that the second requirement of Definition 1.17 holds:

If « > 0* and B > 0* then aff > 0*.

Step 7 We complete the definition of multiplication by setting «0* = 0*a = 0%,
and by setting

(—a)(—=P) ifa<0* B <0%,
af = { —[(—a)B] ifa<O* B> 0%
—[ax- (=P)] ifa>0*% B <O*

The products on the right were defined in Step 6.

Having proved (in Step 6) that the axioms (M) hold in R, it is now
perfectly simple to prove them in R, by repeated application of the identity
9 = —(—17) which is part of Proposition 1.14. (See Step 5.)

The proof of the distributive law

oo(f +7)=af +oay
breaks into cases. For instance, suppose a > 0*, g <0*, g+ y > 0* Then
y= (B + y) + (—B), and (since we already know that the distributive law holds
in R™)

ay=a(f +7) +o-(=p).

But a : (—f) = —(af). Thus

oaf +ay=a(f + 7).
The other cases are handled in the same way.

We have now completed the proof that R is an ordered field with the least-
upper-bound property.

Step 8 We associate with each re Q the set r* which consists of all pe Q
such that p < r. Itis clear that each r* is a cut; that is, r* € R. These cuts satisfy
the following relations:

(@) r*+s*=(r+9)*
() r*s* =(rs)*,
(c) r*<s*ifandonlyifr <s.

To prove (a), choose per* + s*. Then p=u + v, where u<r, v <s.
Hence p < r + s, which says that p € (r + 5)*.
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Conversely, suppose pe(r + s)*. Then p <r +s. Choose t so that

2t =r + s — p, put
rr=r—1ts =s—1.

Then r'er*, s"es*, and p=r' + s’, so that per* + s*.

This proves (a). The proof of (b) is similar.

If r <sthen res*, but r¢r*; hence r* < s*.

If r* < s*, then there is a p € s* such that pé¢r*. Hence r<p<s, so
that r < s.

This proves (c).

Step 9 We saw in Step 8 that the replacement of the rational numbers r by the
corresponding ‘“‘rational cuts’’ r* € R preserves sums, products, and order. This
fact may be expressed by saying that the ordered field Q is isomorphic to the
ordered field O* whose elements are the rational cuts. Of course, r* is by no
means the same as r, but the properties we are concerned with (arithmetic and
order) are the same in the two fields.

It is this identification of Q with Q* which allows us to regard Q as a

subfield of R.
The second part of Theorem 1.19 is to be understood in terms of this

identification. Note that the same phenomenon occurs when the real numbers
are regarded as a subfield of the complex field, and it also occurs at a much
more elementary level, when the integers are identified with a certain subset of Q.

It is a fact, which we will not prove here, that any two ordered fields with
the least-upper-bound property are isomorphic. The first part of Theorem 1.19
therefore characterizes the real field R completely.

The books by Landau and Thurston cited in the Bibliography are entirely
devoted to number systems. Chapter 1 of Knopp’s book contains a more
leisurely description of how R can be obtained from Q. Another construction,
in which each real number is defined to be an equivalence class of Cauchy
sequences of rational numbers (see Chap. 3), is carried out in Sec. 5 of the book

by Hewitt and Stromberg.
The cuts in Q which we used here were invented by Dedekind. The

construction of R from Q by means of Cauchy sequences is due to Cantor.
Both Cantor and Dedekind published their constructions in 1872.

EXERCISES

Unless the contrary is explicitly stated, all numbers that are mentioned in these exer-
cises are understood to be real.

1. If r is rational (r # 0) and x is irrational, prove that r + x and rx are irrational.
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2

3.

5

6

10.
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Prove that there is no rational number whose square is 12.

Prove Proposition 1.15.

Let E be a nonempty subset of an ordered set; suppose « is a lower bound of FE
and B is an upper bound of E. Prove that « <8B.

Let A be a nonempty set of real numbers which is bounded below. Let — A4 be
the set of all numbers — x, where x € 4. Prove that

inf A = —sup(— A).
Fix b > 1.
(a) If m, n, p, q are integers, n >0, ¢ >0, and r = m/n = p/q, prove that
(bm)l/n — (bp)llq.

Hence it makes sense to define b” = (b™)!/".

(b) Prove that b"** = b’b* if r and s are rational.

(¢) If x is real, define B(x) to be the set of all numbers b', where ¢ is rational and
t < x. Prove that

b" = sup B(r)
when r is rational. Hence it makes sense to define
b* = sup B(x)

for every real x.
(d) Prove that b**> = b*b* fc. all real x and y.

. Fix 6>1, y >0, and prove that there is a unique real x such that b* =y, by

completing the following outline. (This x is called the logarithm of y to the base b.)
(a) For any positive integer n, b — 1 > n(b — 1).

(b) Hence b — 1 > n(b''"—1).

(c) Ift>1and n> (b —1)/(t — 1), then b''" < t.

(d) If w is such that b* < y, theén b*+'/m < y for sufficiently large n; to see this,
apply part (c) witht =y - b~",.

(e) If b* >y, then b¥ - /™ > y for sufficiently large n.

(f) Let A be the set of all w such that b* < y, and show that x = sup A4 satisfies
b* = y.

(g) Prove that this x is unique.

. Prove that no order can be defined in the complex field that turns it into an ordered

field. Hint: —1 is a square.

. Suppose z=a + bi, w=c+ di. Define z<w if a<c, and also if a =c but

b <d. Prove that this turns the set of all complex numbers into an ordered set.
(This type of order relation is called a dictionary order, or lexicographic order, for
obvious reasons.) Does this ordered set have the least-upper-bound property ?
Suppose z=a + bi, w=u + iv, and

B |w|+u 1/2 B le_u 1/2
a—( > , b = 5 .
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Prove that z2 = wif v >0 and that (£)> = wif v < 0. Conclude that every complex
number (with one exception!) has two complex square roots.

If z is a complex number, prove that there exists an r >0 and a complex number
w with |w| =1 such that z=rw. Are w and r always uniquely determined by z?
If zy, ..., z, are complex, prove that

lzv+ 2o+ z| <zl + 22| + 00+ |zl
If x, y are complex, prove that
x| — Iyl < x—yl.
If z is a complex number such that |z| = 1, that is, such that zz = 1, compute
|11+ 2|24+ |1 — z|2

Under what conditions does equality hold in the Schwarz inequality ?
Suppose k >3,x,ye R} |[x —y| =d>0, and r > 0. Prove:
(a) If 2r > d, there are infinitely many z € R* such that

lz—x| =[z—y| =r.

(b) If 2r = d, there is exactly one such z.

(c¢) If 2r < d, there is no such z.

How must these statements be modified if kis 2 or 1?
Prove that

Ix +y[2 +|x —y|2 =2|x|> + 2|y|?

if xe R* and y € R*. Interpret this geometrically, as a statement about parallel-
ograms.

If Kk >2 and x € R*, prove that there exists y € R* such that y #0 but x .y = 0.
Is this also true if k =17

Suppose a € R*, b € R*. Find c € R* and r > 0 such that

|x —a| =2|x — b
if and only if |[x —c¢| =vr.
(Solution: 3¢ =4b—a, 3r =2|b— a|.)
With reference to the Appendix, suppose that property (I1I) were omitted from the
definition of a cut. Keep the same definitions of order and addition. Show that

the resulting ordered set has the least-upper-bound property, that addition satisfies
axioms (Al) to (Ad) (with a slightly different zero-element!) but that (AS) fails.
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BASIC TOPOLOGY

FINITE, COUNTABLE, AND UNCOUNTABLE SETS

We begin this section with a definition of the function concept.

2.1 Definition Consider two sets A and B, whose elements may be any objects
whatsoever, and suppose that with each element x of A4 there is associated, in
some manner, an element of B, which we denote by f(x). Then fis said to be a
function from A to B (or a mapping of A into B). The set A is called the domain
of f (we also say [ is defined on A4), and the elements f(x) are called the values
of f. The set of all values of fis called the range of f.

2.2 Definition Let 4 and B be two sets and let f be a mapping of 4 into B.
If Ec A, f(F) is defined to be the set of all elements f(x), for x € E. We call
f(E) the image of E under f. In this notation, f(A4) is the range of f. It is clear
that f(4) < B. If f(A) = B, we say that f maps 4 onto B. (Note that, according
to this usage. onto is more specific than into.)

If £ < B,/ ~"(E) denotes the set of all x € A such that f(x) e E. We call
/=1 (E) the inverse image of E under f. If ye B, f~'(y) is the set of all xe A4
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such that f(x) = y. If, for each y € B, f~'()') consists of at most one element
of A, then f i1s said to be a 1-1 (one-to-on¢) mapping of A into B This may
also be expressed as follows: f is a 1-1 mapping of 4 into B provided that
f(xy) # f(x;) whenever x; # x,, x, € A, x, €EA.

(The notation x, # x, means that x, and x, are distinct elements; otherwise
we write X, = X,.)

2.3 Definition If there exists a 1-1 mapping of A onto B, we say that A and B,
can be put in 1-1 correspondence, or that A and B have the same cardinal number,
or briefly, that A and B are equivalent, and we write A ~ B. This relation clearly

has the following properties:

It is reflexive: 4 ~ A.
It 1s symmetric: If A ~ B, then B ~ A.
It is transitive: If A~ B and B~ C, then A ~ C.

Any relation with these three properties is called an equivalence relation.

2.4 Definition For any positive integer n, let J, be the set whose elements are
the integers 1, 2, ..., n; let J be the set consisting of all positive integers. For any set

A, we say:

(@) A is finite if A~J, for some n (the empty set is also considered to be
finite).

(b) A is infinite if A i1s not finite.

(c) A is countable if A~J.

(d) A is uncountable if A is neither finite nor countable.

(e) A is at most countable if A is finite or countable.

Countable sets are sometimes called enumerable, or denumerable.

For two finite sets 4 and B. we evidently have 4 ~ B it and only 1if .{ and
B contain the same number of elements. For infinite sets, however, the idea of
“having the same number of elements’’ becomes quite vague, whereas the notion
of 1-1 correspondence retains its clarity.

2.5 Example Let A4 be the set of all integers. Then 4 i1s countable. For,
consider the following arrangement of the sets 4 and J:

A: 0,1, -12 -23, -3, ...
J: 1,2,3,4,56,7,...
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We can, in this example, even give an explicit formula for a function f
from J to A which sets up a 1-1 correspondence:

(n
5 (n even),
fln)=-

n—1
\ 2

(n odd).

2.6 Remark A finite set cannot be equivalent to one of its proper subsets.
That this is, however, possible for infinite sets, is shown by Example 2.5, in
which J is a proper subset of A.

In fact, we could replace Definition 2.4(b) by the statement: A is infinite if
A 1s equivalent to one of its proper subsets.

2.7 Definition By a sequence, we mean a function f defined on the set J of all
positive integers. If f(n) = x,, for n € J, it is customary to denote the sequence
f by the symbol {x,}, or sometimes by x,, x,, x5, .... The values of f, that is,
the elements x,, are called the terms of the sequence. If 4 is a set and if x, € 4
for all n e J, then {x,} is said to be a sequence in A, or a sequence of elements of A.

Note that the terms x,, x,, x5, ... of a sequence need not be distinct.

Since every countable set is the range of a 1-1 function defined on J, we
may regard every countable set as the range of a sequence of distinct terms.
Speaking more loosely, we may say that the elements of any countable set can
be ‘“‘arranged in a sequence.”

Sometimes it is convenient to replace J in this definition by the set of all
nonnegative integers, i.e., to start with O rather than with 1.

2.8 Theorem Every infinite subset of a countable set A is countable.

Proof Suppose E < A, and FE is infinite. Arrange the elements x of A4 in
a sequence {x,} of distinct elements. Construct a sequence {n,} as follows:

Let n, be the smallest positive integer such that x, € E. Having
chosenn,, ..., n_, (k=2,3,4,...), let n, be the smallest integer greater
than n,_, such that x, € E.

Putting f(k) = x,, (k =1, 2,3, ...), we obtain a 1-1 correspondence
between E and J.

The theorem shows that, roughly speaking, countable sets represent

the “smallest’’ infinity: No uncountable set can be a subset of a countable
set.

2.9 Definition Let 4 and Q be sets, and suppose that with each element a of
A there is associated a subset of Q which we denote by E,.
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The set whose elements are the sets E, will be denoted by {E,}. Instead
of speaking of sets of sets, we shall sometimes speak of a collection of sets, or
a family of sets.

The union of the sets E, is defined to be the set S such that x € S if and only
if x e E, for at least one « € 4. We use the notation

(1) S = U E,.
xe A
If A consists of the integers 1, 2, ..., n, one usually writes
(2) S= E,
m=1
or
(3) S=E,VE,u--UE,.

If A 1s the set of all positive integers, the usual notation is
(4) S=J En.

The symbol oo in (4) merely indicates that the union of a countable col-
lection of sets 1s taken, and should not be confused with the symbols + o0, — o0,
introduczd in Definition 1.23.

The intersection of the sets F_ is defined to be the set P such that x ¢ P if
and only if x ¢ E_, for every o« ¢ A. We use the notation

(5) P =)L,
xa€ A
or
(6) P=ﬂE,,,=E,nEzr\“-nE,‘,
m-=1
or

(7) P=\E,,

1

DY

as for unions. If An B is not empty, we say that A and B intersect; otherwise they
are a sjoint.

2.10 Examples

(@) Suppose E consists of 1, 2, 3 and E, consists of 2, 3, 4. Then
E\ U E, consists of 1, 2, 3, 4, whereas E, n E, consists of 2, 3.
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(b) Let A be the set of real numbers x such that 0 < x < 1. For every
x € A, let E, be the set of real numbers y such that 0 < y < x. Then

(1) E.cE,ifandonlyif0<x<z<1;
(i1) U E; = E;;

xeA
(iii) () E, is empty;

xe A

(1) and (i1) are clear. To prove (iii), we note that for every y >0, y ¢ E,
if x<y. Hence y ¢ (\xc4 E..

2.11 Remarks Many properties of unions and intersections are quite similar
to those of sums and products, in fact, the words sum and product were some-
times used in this connection, and the symbols ¥ and IT were written in place

of () and ().

The commutative and associative laws are trivial;

(8) AuUB=Bu A, AN B=BnA.
9 AuBuC=40u(BuC(C); AnNnBNnC=A4An(BnC(C).

Thus the omission of parentheses in (3) and (6) is justified.
The distributive law also holds:

(10) An(BulC)=(AnB)u(4n ().

To prove this, let the left and right members of (10) be denoted by E and F,
respectively.

Suppose x€ E. Then xe A and xe B u C, that is, x € B or x € C (pos-
sibly both). Hence xe A n Bor xe A n C, so that xe F. Thus Ec F.

Next, suppose xe F. Then xe An Bor xe An C. Thatis, xe A, and
xeBuC. Hence xe A n (B u C), so that Fc E.

It follows that E = F.

We list a few more relations which are easily verified:

(11) Ac AU B,
(12) ANnBcA.

If 0 denotes the empty set, then

(13) Au0=A4, An0=0.
If A c B, then

(149) AU B =B, An B=A.
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2.12 Theorem Let{E}, n=1,2 3,...,bea sequence of countable sets,andput

(15) S = U E,.
n=1
Then S is countable.

Proof Let every set E, be arranged in a sequence {x,},k=1,2,3, ...,
and consider the infinite array

(16)
in which the elements of E, form the nth row. The array <ontains all
elements of S. As indicated by the arrows, these elements can be
arranged in a sequence

(17) X115 X215 X125 X315 X225 X135 X415 X325 X23, X4, - -

If any two of the sets E, have elements in common, these will appear more
than once in (17). Hence there is a subset T of the set of all positive
integers such that S ~ T, which shows that § is at most countable
(Theorem 2.8). Since E, < S, and E, is infinite, S is infinite, and thus
countable.

Corollary Suppose A is at most countable, and, for every a € A, B, is at most

countable. Put
T=1_)B,.

aec A
Then T is at most countable.

For T is equivalent to a subset of (15).

2.13 Theorem Let A be a countable set, and let B, be the set of all n-tuples
(ag,...,a,), wherea,e A(k=1,...,n), and the elements a,, ..., a, need not be
distinct. Then B, is countable.

Proof That B, is countable is evident, since B, = A. Suppose B,_, is
countable (n =2, 3,4,...). The elements of B, are of the form

(18) (b, a) (be B,_{,ae A).

For every fixed b, the set of pairs (b, a) is equivalent to 4, and hence
countable. Thus B, is the union of a countable set of countable sets. By
Theorem 2.12, B, is countable.

The theorem follows by induction.
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Corollary The set of all rational numbers is countable.

Proof We apply Theorem 2.13, with n = 2, noting that every rational r
is of the form b/a, where a and b are integers. The set of pairs (a, b), and
therefore the set of fractions b/a, is countable.

In fact, even the set of all algebraic numbers is countable (see Exer-
cise 2).

That not all infinite sets are, however, countable, is shown by the next
theorem.

2.14 Theorem Let A be the set of all sequences whose elements are the digits 0O
and 1. This set A is uncountable.
The elements of A are sequences like 1,0,0,1,0,1,1,1,....

Proof Let E be a countable subset of 4, and let E consist of the se-
quences s, §,., 53, .... We construct a sequence s as follows. If the nth
digit in s, is 1, we let the nth digit of s be 0, and vice versa. Then the
sequence s differs from every member of E in at least one place; hence
s ¢ E. But clearly s € A, so that E is a proper subset of A.

We have shown that every countable subset of 4 is a proper subset
of A. It follows that A is uncountable (for otherwise 4 would be a proper
subset of 4, which is absurd).

The i1dea of the above proof was first used by Cantor, and is called Cantor’s
diagonal process; for, if the sequences s, s,, 55, ... are placed in an array like
(16), it is the elements on the diagonal which are involved in the construction of
the new sequence.

Readers who are familiar with the binary representation of the real
numbers (base 2 instead of 10) will notice that Theorem 2.14 implies that the
set of all real numbers is uncountable. We shall give a second proof of this
fact in Theorem 2.43.

METRIC SPACES

2.15 Definition A set X, whose elements we shall call points, is said to be a
metric space if with any two points p and g of X there is associated a real
number d(p, q), called the distance from p to g, such that

(@) d(p,q)>0if p+#q;dp,p) =0,
(b) d(p,q) =4d(q,p),
(c) d(p,q) <d(p,r)+ d(r,q), for any r € X.

Any function with these three properties is called a distance function, or
a metric.
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2.16 Examples The most important examples of metric spaces, from our
standpoint, are the euclidean spaces R¥, especially R! (the real line) and R? (the
complex plane); the distance in R* is defined by

(19) dx,y) = |x —y| (x,y € RY).

By Theorem 1.37, thc conditions of Definition 2.15 are satisfied by (19).

It is important to observe that every subset Y of a metric space X is a metric
space in its own right, with the same distance function. For it is clear that if
conditions (a) to (c) of Definition 2.15 hold for p, q. r € X. they also hold if we
restrict p, g, r to liein Y.

Thus every subset of a euclidean space is a metric space. Other examples
are the spaces €(K) and #?(1), which are discussed in Chaps. 7 and 11, respec-
tively.

2.17 Definition By the scgment (a, b) we mean the set of all real numbers x
such that a < x < b.

By the interval [a, b] we mean the set of all real numbers x such that
a<x<b

Occasionally we shall also encounter ‘*half-open intervals’’ [a, b) and (a, b];
the first consists of all x such that a < x < b, the second of all x such that
a<x<b.

Ifa, < b, fori=1,...,k, the set of all points x = (x,. ..., x,) in R* whose
coordinates satisfy the inequalities a; < x; < b; (1 < i< k) is called a k-cell.
Thus a 1-cell is an interval, a 2-cell is a rectangle, etc.

If x e R* and r > 0, the open (or closed) ball B with center at x and radius r
is defined to be the set of all y € R* such that |y — x| < r (or |y — x| <r).

We call a set E = R* convex if

X+ (1 —A)yekFE

whenever xe E,ye E,and 0 < A < 1.
For example, balls are convex. For if |y —x| <r,|z—x]| <r, and
0 <A<, we have

[y + (1 = Dz — x| = [A(y - x) + (I — )z — x)|
<Aly—-x|+Q =-A|z—x| <ir+ (A =Dr
=r.

The same proof applies to closed balls. It is also easy to see that k-cells are
convex.
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2.18 Definition Let X be a metric space. All points and sets mentioned below
are understood to be elements and subsets of X.

(a)
(b)
(©)

(d)
(e)

(f)
(9)

(h)

A neighborhood of a point p is a set N,(p) consisting of all points ¢
such that d(p, ¢) < r. The number r is called the radius of N,(p).

A point p is a limit point of the set E if every neighborhood of p
contains a point g # p such that g € E.

If pe E and p is not a limit point of E, then p is called an isolated
point of E.

E is closed if every limit point of F is a point of E.

A point p is an interior point of E if there is a neighborhood N of p
such that N c E.

E is open if every point of E is an interior point of E.

The complement of E (denoted by E°) is the set of all points pe X
such that p ¢ E.

E is perfect if E is closed and if every point of E is a limit point
of E.

(/) E is bounded if there is a real number M and a point g € X such that

()

d(p,q) < M for all pe E.

E is dense in X if every point of X is a limit point of E, or a point of
E (or both).

Let us note that in R! neighborhoods are segments, whereas in R? neigh-
borhoods are interiors of circles.

2.19 Theorem Every neighborhood is an open set.

Proof Consider a neighborhood E = N,(p), and let g be any point of E.
Then there is a positive real number 4 such that

dip,q) =r —h.

For all points s such that d(q, s) < h, we have then

d(p,s) <d(p,q)+d(q,s) <r—h+h=r,

so that se€ E. Thus g is an interior point of E.

2.20 Theorem If p is a limit point of a set E, then every neighborhood of p
contains infinitely many points of E.

Proof Suppose there is a neighborhood N of p which contains only a
finite number of points of E. Let ¢q,,...,q, be those points of N n E,
which are distinct from p, and put

r = min d(p, q,,)

1sms<n
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[we use this notation to denote the smallest of the numbers d(p, q,), ...,
d(p, q,)]- The minimum of a finite set of positive numbers is clearly posi-
tive, so that r > 0.

The neighborhood N,(p) contains no point g of E such that g # p,
so that p is not a limit point of E. This contradiction establishes the
theorem.

Corollary A finite point set has no limit points.

2.21 Examples Let us consider the following subsets of R%:

(@) The set of all complex z such that |z| < 1.

() The set of all complex z such that |z| < 1.

(¢) A finite set.

(d) The set of all integers.

(e) The set consisting of the numbers 1/n(n =1, 2, 3,...). Let us note
that this set £ has a limit point (namely, z = 0) but that no point of E is
a limit point of E; we wish to stress the difference between having a limit
point and containing one.

(f) The set of all complex numbers (that is, R?).

(9) The segment (a, b).

Let us note that (d), (e), (g) can be regarded also as subsets of R'.
Some properties of these sets are tabulated below:

Closed Open Perfect Bounded

(@) No Yes No Yes
(b) Yes No Yes Yes
(c) Yes No No Yes
d) Yes No No No
(e) No No No Yes
(f) Yes Yes Yes No
(9) No No Yes

In (g), we left the second entry blank. The reason is that the segment
(a, b) is not open if we regard it as a subset of R2, but it is an open subset of R'.

2.22 Theorem Let{E,} be a(finite or infinite) collection of sets E,. Then
(20) (U Ea)c =) (ED.

Proof Let A and B be the left and right members of (20). If x € A4, then

x ¢, E., hence x ¢ E, for any a, hence x € E: forevery 2, so that x e[\ E;.
Thus A < B.
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Conversely, if x € B, then x € E{ for every a, hence x ¢ E, for any a,
hence x ¢ J, E,, so that x e (U, E,). Thus Bc A.
It follows that A = B.

2.23 Theorem A set E is open if and only if its complement is closed.

Proof First, suppose E€ is closed. Choose xe€ E. Then x ¢ E€, and x is
not a limit point of E°. Hence there exists a neighborhood N of x such
that En N i1s empty, that is, N = E. Thus x is an interior point of E,
and E is open.

Next, suppose E is open. Let x be a limit point of E€. Then every
neighborhood of x contains a point of E€, so that x is not an interior point
of E. Since E is open, this means that x € £¢. It follows that E€ is closed.

Corollary A set F is closed if and only if its complement is open.

2.24 Theorem

(21)

(a) For any collection {G,} of open sets,\ ), G, is open.

(b) For any collection {F,} of closed sets, (. F, is closed.

(¢) For any finite collection G, ..., G, of open sets, ()=, G, is open.
(d) For any finite collection Fy, ..., F, of closed sets,\)}_, F; is closed.

Proof Put G =J, G,. If xe G, then x € G, for some a. Since x is an
interior point of G,, x is also an interior point of G, and G is open. This
proves (a).

By Theorem 2.22,

(ﬂ Fo)” =U (F2),

and F; is open, by Theorem 2.23. Hence (a) implies that (21) is open so
that (), F, is closed.

Next, put H =(){-, G;. For any x € H, there exist neighborhoods
N; of x, with radii r;, such that N, < G;(i=1,...,n). Put

r=min(ry,...,r,),

and let N be the neighborhood of x of radius r. Then N < G, for i =1,
..., n, so that N < H, and H is open.
By taking complements, (d) follows from (c):

(UF) = (e,
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2.25 Examples In parts (¢) and (d) of the preceding theorem, the finiteness of

. 1 1
the collections is essential. For let G, be the segment (— - —) n=1,2,3,...).

n n
Then G, is an open subset of R'. Put G = % G,. Then G consists of a single
point (namely, x = 0) and is therefore not an open subset of R'.

Thus the intersection of an infinite collection of open sets need not be open.
Similarly, the union of an infinite collection of closed sets need not be closed.

.

2.26 Definition If X is a metric space, if E < X, and if E’ denotes the set of
all limit points of E in X, then the closure of E is the set E = E U E’.

2.27 Theorem If X is a metric space and E = X, then

(@) Eisclosed,
(b) E =E ifand only if E is closed,
(¢) E < Ffor every closed set F — X such that E c F.

By (a) and (¢), E 1s the smallest closed subset of X that contains E.

Proof

(@) If pe X and p ¢ E then p is neither a point of E nor a limit point of E.
Hence p has a neighborhood which does not intersect E. The complement
of E is therefore open. Hence E is closed.

(b) If E=E, (a) implies that E is closed. If E is closed, then E' = E
[by Definitions 2.18(d) and 2.26], hence E = E.

(¢) If Fisclosed and F > E, then F > F’, hence F > E’. Thus F > E.

2.28 Theorem Let E be a nonempty set of real numbers which is bounded above.
Lety =sup E. Thenye E. Hence y € E if E is closed.

Compare this with the examples in Sec. 1.9.

Proof If ye E then ye E. Assume y¢ E. For every h > 0 there exists
then a point x € E such that y — h < x < y, for otherwise y — h would be
an upper bound of E. Thus y is a limit point of E. Hence y € E.

2.29 Remark Suppose Ec Y < X, where X is a metric space. To say that E
is an open subset of X means that to each point p € E there is associated a
positive number r such that the conditions d(p,q) < r,ge X imply that g € E.
But we have already observed (Sec. 2.16) that Y is also a metric space, so that
our definitions may equally well be made within Y. To be quite explicit, let us
say that E is open relative to Y if to each p € E there is associated an r > 0 such
that g € E whenever d(p,q) <r and ge Y. Example 2.21(g) showed that a set
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may be open relative to Y without being an open subset of X. However, there
is a simple relation between these concepts, which we now state.

2.30 Theorem Suppose Y = X. A subset E of Y is open relative to Y if and
only if E =Y n G for some open subset G of X.

Proof Suppose E is open relative to Y. To each p € E there is a positive
number r, such that thc conditions d(p,q) <r,,q€ Y imply that g € E.
Let V', be the set of ail g € X such that d(p, q) < r,, and define
G=1JV,.
pekE

Then G is an open subset of X, by Theorems 2.19 and 2.24.

Since pe V,forall pe E, itisclear that Ec G N Y.

By our choice of V,, we have V', n Y < E for every p € E, so that
GnNn YcE Thus E =G n Y, and one half of the theorem is proved.

Conversely, if G is openin X and E=GnNn Y, every pe E has a
neighborhood V, = G. Then V, n Y c E, so that E is open relative to Y.

COMPACT SETS

2.31 Definition By an open cover of a set E in a metric space X we mean a
collection {G,} of open subsets of X such that F < |J, G, .

2.32 Definition A subset K of a metric space X is said to be compact if every
open cover of K contains a finite subcover.

More explicitly, the requirement is that if {G,} is an open cover of K, then
there are finitely many indices «,, ..., a, such that

Kc G, v uG,,.

The notion of compactness is of great importance in analysis, especially
in connection with continuity (Chap. 4).

It is clear that every finite set is compact. The existence of a large class of
infinite compact sets in R* will follow from Theorem 2.41.

We observed earlier (in Sec. 2.29) that if £ = Y < X, then E may be open
relative to Y without being open relative to X. The property of being open thus
depends on the space in which E is embedded. The same is true of the property
of being closed. \

Compactness, however, behaves better, as we shall now see. To formu-
late the next theorem. let us say, temporarily, that K is compact relative to X if
the requirements of Definition 2.32 are met.
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Theorem Suppose K< Y < X. Then K is compact relative to X if and

only if K is compact relative to Y.

By virtue of this theorem we are able, in many situations, to regard com-

pact sets as metric spaces in their own right, without paying any attention to
any embedding space. In particular, although it makes little sense to talk of
open spaces, or of closed spaces (every metric space X is an open subset of itself,
and 1s a closed subset of itself), it does make sense to talk of compact metric

spaces.

(22)

(23)

2.34

2.35

Proof Suppose K is compact relative to X, and let {V,} be a collection
of sets, open relative to Y, such that K = (J, V,. By theorem 2.30, there
are sets G,, open relative to X, such that V, = Y n G,, for all «; and since
K is compact relative to X, we have

Kc Gy v v Gy,

for some choice of finitely many indices «,, ..., a,. Since K< Y, (22)
implies

Kc Ve, u-ul,,.

This proves that K is compact relative to Y.

Conversely, suppose K is compact relative to Y, let {G,} be a col-
lection of open subsets of X which covers K, and put V, = Y n G,. Then
(23) will hold for some choice of «,,...,a,; and since V, < G,, (23)
implies (22).

This completes the proof.

Theorem Compact subsets of metric spaces are closed.

Proof Let K be a compact subset of a metric space X. We shall prove
that the complement of K is an open subset of X.

Suppose pe X, p ¢ K. Ifge K, let V, and W, be neighborhoods of p
and ¢, respectively, of radius less than 4d(p, q) [see Definition 2.18(a)].
Since K is compact, there are finitely many points ¢,, ..., g, in K such that

KeW, v---0W, =W

If V=V, n-nV,, then Vis a neighborhood of p which does not
intersect . Hence V' < K¢, so that p is an interior point of K°. The
theorem follows.

Theorem Closed subsets of compact sets are compact.

Proof Suppose F = K < X, Fis closed (relative to X), and K is compact.
Let {V,} be an open cover of F. If F¢is adjoined to {V,}, we obtain an
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open cover Q of K. Since K is compact, there is a finite subcollection ®
of QQ which covers K, and hence F. If F€is a member of ®, we may remove
it from ® and still retain an open cover of F. We have thus shown that a
finite subcollection of {V,} covers F.

Corollary [If F is closed and K is compact, then F n K is compact.

Proof Theorems 2.24(b) and 2.34 show that Fn K is closed; since
Fn K c K, Theorem 2.35 shows that F n K is compact.

2.36 Theorem I[f{K,} is a collection of compact subsets of a metric space X such
that the intersection of every finite subcollection of {K,} is nonempty, then [\ K,
IS nonempty.

Proof Fix a member K, of {K,} and put G, = K;. Assume that no point
of K, belongs to every K,. Then the sets G, form an open cover of K| ;
and since K, is compact, there are finitely many indices «,, ..., a, such
that K, < G,, U '+ U G,,. But this means that

KinKg 0N K,

is empty, in contradiction to our hypothesis.

Corollary If {K,} is a sequence of nonempty compact sets such that K, o K, , ,
(n=1,23,...), then(\Y K, is not empty.

2.37 Theorem If E is an infinite subset of a compact set K, then E has a limit
point in K.

Proof If no point of K were a limit point of E, then each g € K would
have a neighborhood V, which contains at most one point of E (namely,
g, if g€ E). It is clear that no finite subcollection of {V,} can cover E;

and the same is true of K, since £ = K. This contradicts the compactness
of K.

2.38 Theorem If {I,} is a sequence of intervals in R', such that I,>1,,,
(n=1,23,...), then (Y 1, is not empty.

Proof If I, = [a,, b,], let E be the set of all a,. Then E is nonempty and
bounded above (by b,). Let x be the sup of E. If m and n are positive
integers, then

an S am+n —-<- bm+n -<—bm ’

so that x < b,, for each m. Since it is obvious that a, < x, we see that
xel, form=1,23,....
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Theorem Let k be a positive integer. If {I.} is a sequence of k-cells such

thatl,o1,,,(n=1,2,3,...), then (T I, is not empty.

2.40

Proof Let I, consist of all points x = (xy, ..., x;) such that
a,,,ijij,,,j (lSjSk;n=l,2,3,...),

and put I, ;=Ia,; b,;]. For each j, the sequence {/,;} satisfies the
hypotheses of Theorem 2.38. Hence there are real numbers x7(1 <j < k)
such that

a,; <x; <b,; (1<j<k;n=1,2,3,..)).

Setting x* = (xT, ..., xf), we see that x*e I, for n=1,2,3,.... The
theorem follows.

Theorem Every k-cell is compact.

Proof Let 7 be a k-cell, consisting of all points x = (xy, ..., x;) such
that a; <x; < b; (1 <j < k). Put

Then |[x —y| <4d,ifxel, yel

Suppose, to get a contradiction, that there exists an open cover {G,}
of I which contains no finite subcover of I. Put ¢; =(a; + b;)/2. The
intervals [a;, ¢;] and [c;, b;] then determine 2 k-cells Q; whose union is I.
At least one of these sets Q,;, call it I;, cannot be covered by any finite
subcollection of {G,} (otherwise I could be so covered). We next subdivide

I, and continue the process. We obtain a sequence {/,} with the following
properties:

(@ Io),olLLol;o-

(b) 1, is not covered by any finite subcollection of {G,};
(¢ ifxel,andyel,, then |x —y| <27"6.

By (a) and Theorem 2.39, there is a point x* which lies in every /,,.
For some o, x* € G,. Since G, is open, there exists r > 0 such that
|y — x*| < r implies that ye G,. If nis so large that 27 "6 < r (there is
such an n, for otherwise 2" < é/r for all positive integers n, which is
absurd since R is archimedean), then (c¢) implies that /, = G,, which con-
tradicts (b).

This completes the proof.

The equivalence of (a) and (b) in the next theorem is known as the Heine-

Borel theorem.
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2.41 Theorem If a set E in R* has one of the following three properties, then it
has the other two.

(a) Eisclosed and bounded.
(b) Eiscompact.
(c) Every infinite subset of E has a limit point in E.

Proof If (a) holds, then E = I for some k-cell I, and (b) follows from
Theorems 2.40 and 2.35. Theorem 2.37 shows that (b) implies (c). It
remains to be shown that (¢) implies (a).

If £ is not bounded, then E contains points x, with

|x,| > n n=1,23,...).

The set S consisting of these points x, is infinite and clearly has no limit
point in R*, hence has none in E. Thus (c) implies that E is bounded.

If E is not closed, then there is a point x, € R* which is a limit point
of £ but not a point of E. Forn=1,2,3,..., there are points x, € E
such that |x, — xo| < 1/n. Let S be the set of these points x,,. Then S is
infinite (otherwise |x, — X,| would have a constant positive value, for
infinitely many n), S has x, as a limit point, and S has no other limit
point in R¥. For ify e R* y # x,, then

|xn_Y| > IXO —yl - lxn '-xOI

1 |
> |xo — Y| —zzilxo—ﬂ

for all but finitely many »; this shows that y is not a limit point of S
(Theorem 2.20).
Thus S has no limit point in E; hence E must be closed if (¢) holds.

We should remark, at this point, that (b) and (¢) are equivalent in any
metric space (Lxaercise 26) but that (a) does not, in general, imply (b) and (c¢).
Examples are furnished by Exercise 16 and by the space .#2%, which is dis-
cussed in Chap. 11.

2.42 Theorem (Weierstrass) FEvery bounded infinite subset of R* has a limit
point in R*.

Proof Being bounded, the set £ in question is a subset of a k-cell I = R*,
By Theorem 2.40, I is compact, and so £ has a limit point in /, by
Theorem 2.37.
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PERFECT SETS

2.43 Theorem Let P be a nonempty perfect set in R*. Then P is uncountable.

Proof Since P has limit points, P must be infinite. Suppose P is count-
able, and denote the points of P by x,, x,, X5, .... We shall construct a
sequence {V,} of neighborhoods, as follows.

Let ¥, be any neighborhood of x,. If V¥, consists of all y € R* such
that |y — x;| < r, the closure V, of V, is the set of all y e R* such that
ly —x,| <.

Suppose V, has been constructed, so that ¥, n P is not empty. Since
every point of P is a limit point of P, there is a neighborhood V,,, such
that () V,,, < V,, (ii) x,¢ V,,,, (iii) V,,, n P is not empty. By (iii),
V,+, satisfies our induction hypothesis, and the construction can proceed.

Put K, = V, n P. Since V, is closed and bounded, V, is compact.
Since x, ¢ K,,,, no point of P lies in ¥ K,. Since K, = P, this implies
that T K, is empty. But each K, is nonempty, by (iii), and K, > K, ,,,
by (1); this contradicts the Corollary to Theorem 2.36.

Corollary FEvery interval [a, b] (a < b) is uncountable. In particular, the set of
all real numbers is uncountable.

2.44 The Cantor set The set which we are now going to construct shows
that there exist perfect sets in R' which contain no segment.

Let E, be the interval [0, 1]. Remove the segment (4, ), and let E, be
the union of the intervals

[0, 4] [3, 1].

Remove the middle thirds of these intervals, and let E, be the union of the
intervals

[0, 51, [, 3} [$. 51 [5 1]
Continuing in this way, we obtain a sequence of compact sets E,, such that

(a) EIDE23E3D"';
(b) E, is the union of 2" intervals, each of length 37",

The set
P=()E,
n=1

is called the Cantor set. P is clearly compact, and Theorem 2.36 shows that P
is not empty.
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No segment of the form

(3k+1 3k+2)

3™ 3"

24)

where k and m are positive integers, has a point in common with P. Since every
segment (a, f) contains a segment of the form (24), if

p—a
6

3T"M< .
P contains no segment.

To show that P is perfect, it is enough to show that P contains no isolated
point. Let x € P, and let S be any segment containing x. Let I, be that interval
of E, which contains x. Choose n large enough, so that I, = S. Let x, be an
endpoint of I, such that x, # x.

It follows from the construction of P that x, e P. Hence x is a limit point
of P, and P is perfect.

One of the most interesting properties of the Cantor set is that it provides
us with an example of an uncountable set of measure zero (the concept of
measure will be discussed in Chap. 11).

CONNECTED SETS

2.45 Definition Two subsets 4 and B of a metric space X are said to be
separated if both A n B and A n B are empty, i.e., if no point of A4 lies in the
closure of B and no point of B lies in the closure of A.

A set E = X is said to be connected if E is not a union of two nonempty
separated sets.

2.46 Remark Separated sets are of course disjoint, but disjoint sets need not
be separated. For example, the interval [0, 1] and the segment (1, 2) are not
separated, since 1 is a limit point of (1, 2). However, the segments (0, 1) and
(1, 2) are separated.

The connected subsets of the line have a particularly simple structure:

2.47 Theorem A subset E of the real line R! is connected if and only if it has the
following property: If xe E, ye E, and x < z <y, then z€ E.

Proof If there exist x € E, y € E, and some z € (x, y) such that z ¢ E, then
E=A4, v B, where

A, =En (— o0, 2), B, = E N (z, ).
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Since x € A, and y € B,, A and B are nonempty. Since A, = (— o0, z) and
B, c (z, ), they are separated. Hence E is not connected.

To prove the converse, suppose E is not connected. Then there are
nonempty separated sets A and B suchthat 4 U B=E. Pick xe€ A, y € B,
and assume (without loss of generality) that x < y. Define

z=sup (4 n [x, y]).

By Theorem 2.28, z € A; hence z ¢ B. In particular, x < z < y.

If z¢ A, it follows that x <z < y and z ¢ E.

If ze A, then z ¢ B, hence there exists z, such that z< z; <y and
2, ¢ B. Thenx<z, <yandz ¢FE.

EXERCISES

NN AW

. Prove that the empty set is a subset of every set
. A complex number z is said to be algebraic if there are integers ao, ..., a,, not all

zero, such that
az"+a;z2" '+ -4+ ap-1z2+a,=0.

Prove that the set of all algebraic numbers is countable. Hint: For every positive
integer NV there are only finitely many equations with

n+ |ao| + |ai| + -+ |as| =N.
Prove that there exist real numbers which are not algebraic.
Is the set of all irrational real numbers countable ?
Construct a bounded set of real numbers with exactly three limit points.
Let E’ be the set of all limit points of a set E. Prove that E’ is closed. Prove that
E and E have the same limit points. (Recall that E = EuU E’.) Do E and E’ always
have the same limit points?
Let A,, A,, A5, ... be subsets of a metric space.
(a) If B,= \J?=, A:i, prove that B, = |Jp., A;, forn=1,2,3, ....
(b) If B= %, A:, prove that B> |, A4,.
Show, by an example, that this inclusion can be proper.

. Is every point of every open set E < R? a limit point of E? Answer the same

question for closed sets in R2.

Let E° denote the set of all interior points of a set E. [See Definition 2.18(e);
E° is called the interior of E.]

(a) Prove that E° is always open.

(b) Prove that E is open if and only if E° = E,

(¢) If G < E and G is open, prove that G < E°.

(d) Prove that the complement of E° is the closure of the complement of E.

() Do E and E always have the same interiors?

(f) Do E and E” always have the same closures ?
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10.

11.

12.

13.
14.

15.

16.

17.

18.
19.

20.

21.
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Let X be an infinite set. For p € X and g € X, define
1 (ifp#¢q)
d(p,q) = { :
0 (if p = q).

Prove that this is a metric. Which subsets of the resulting metric space are open?
Which are closed? Which are compact?
For x € R! and y € R, define

di(x, y) = (x — y)?,
d:(x,y) =V |x—yl,
di(x, y) =|x* — y?|,
da(x,y) =|x—2y|,

x—
ds(x»)’) — 1 _!_Ixi),y, .

Determine, for each of these, whether it is a metric or not.

Let K < R! consist of 0 and the numbers 1/n, forn=1, 2, 3, .... Prove that K'is
compact directly from the definition (without using the Heine-Borel theorem).
Construct a compact set of real numbers whose limit points form a countable set.
Give an example of an open cover of the segment (0, 1) which has no finite sub-
cover.

Show that Theorem 2.36 and its Corollary become false (in R!, for example) if the
word “‘compact’ is replaced by ‘‘Closed” or by ‘“bounded.”

Regard Q, the set of all rational numbers, as a metric space, with d(p,q) =|p — q|.
Let E be the set of all p e Q such that 2 < p? < 3. Show that E is closed and
bounded in Q, but that E is not compact. Is E openin Q?

Let E be the set of all x € [0. 1] whose decimal expansion contains only the digits
4 and 7. Is E countable? Is E dense in [0, 1]? Is E compact? Is E perfect?

Is there a nonempty perfect set in R' which contains no rational number?

(a) If A and B are disjoint closed sets in some metric space X, prove that they
are separated.

(b) Prove the same for disjoint open sets.

(¢) Fix pe X, 6 > 0, define A4 10 be the set of all g € X for which d(p, q) < 6, define
B similarly, with > in place of <. Prove that A and B are separated.

(d) Prove that every connected metric space with at least two points is uncount-
able. Hint: Use (¢).

Are closures and interiors of connected sets always connected? (Look at subsets
of R2.)

Let A and B be separated subsets of some R*, suppose a € A, b€ B, and define

P)=(0—1ta+tb
for t € R'. Put Ao =p~'(A), Bo =p~'(B). [Thus t € A, if and only if p(¢) € A4.]
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(a) Prove that Ao and B, are separated subsets of R'.
(b) Prove that there exists 7o € (0, 1) such that p(z,) ¢ A L B.
(c) Prove that every convex subset of R* is connected.

A metric space is called separable if it contains a countable dense subset. Show
that R* is separable. Hint: Consider the set of points which have only rational
coordinates.

A collection {V,} of open subsets of X is said to be a base for X if the following
is true: For every x € X and every open set G < X such that x e G, we have
x€ V,< G for some a«. In other words, every open set in X is the union of a
subcollection of {V,}.

Prove that every separable metric space has a countable base. Hint: Take

all neighborhoods with rational radius and center in some countable dense subset
of X.

Let X be a metric space in which every infinite subset has a limit point. Prove that
X is separable. Hint: Fix 6 >0, and pick x, € X. Having chosen x,, ..., x, € X,
choose x;., € X, if possible, so that d(x;, x;,,)>8 fori=1, ...,j. Show that

this process must stop after a finite number of steps, and that X can therefore be
covered by finitely many neighborhoods of radius 6. Taked = 1/n(n =1, 2,3,...),
and consider the centers of the corresponding neighborhoods.

Prove that every compact metric space K has a countable base, and that K is
therefore separable. Hint: For every positive integer n, there are finitely many
neighborhoods of radius 1/#n whose union covers K.

Let X be a metric space in which every infinite subset has a limit point. Prove
that X is compact. Hint: By Exercises 23 and 24, X has a countable base. It
follows that every open cover of X has a cowntable subcover {G,}, n =1, 2, 3, ....
if no finite subcollection of {G,} covers X, then the complement F,of G, U : -+ U G,
is nonempty for each », but () F, is empty. If E is a set which contains a point
from each F,, consider a limit point of E, and obtain a contradiction.

Define a point p in a metric space X to be a condensation point of a set E < X if
every neighborhood of p contains uncountably many points of E.

Suppose E < R*, E is uncountable, and let P be ihe set of all condensation
points of E. Prove that P is perfect and that at most countably many points of E
are not in P. In other words, show that P n E is at most countable. Hint: Let
{V,.; be a countable base of R*, let # be the union of those V, for which E n V,
is at most countable, and show that P = W<,

Prove that every closed set in a separable metric space is the union of a (possibly
empty) perfect set and a set which is at most countable. (Corollary: Every count-
able closed set in R* has isolated points.) Hint: Use Exercise 27.

Prove that every opcn set in R' is the union of an at most countable collection of
disjoint segments. Hint: Use Exercise 22.
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30. Imitate the proof of Theorem 2.43 to obtain the following result:

If R*= | )¥F,, where each F, is a closed subset of R, then at least one F,
has a nonempty interior.

Equivalent statement: If G, is a dense open subset of R*, forn=1, 2,3, ...,
then ()¥G. is not empty (in fact, it is dense in R¥).

(This is a special case of Baire’s theorem; see Exercise 22, Chap. 3, for the general
case.)
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NUMERICAL SEQUENCES AND SERIES

As the title indicates, this chapter will deal primarily with sequences and series
of complex numbers. The basic facts about convergence, however, are just as
easily explained in a more general setting. The first three sections will therefore
be concerned with sequences in euclidean spaces, or even in metric spaces.

CONVERGENT SEQUENCES

3.1 Definition A sequence {p,} in a metric space X is said to converge if there
is a point p € X with the following property: For every ¢ > O there is an integer
N such that n > N implies that d(p, , p) < &. (Here d denotes the distance in X.)

In this case we also say that {p,} converges to p, or that p is the limit of
{p,} [see Theorem 3.2(b)], and we write p, = p, or

lim p, =p.

n— o

If {p,} does not converge, it is said to diverge.
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It might be well to point out that our definition of ‘‘convergent sequence”
depends not only on {p,} but also on X; for instance, the sequence {1/n} con-
verges in R! (to 0), but fails to converge in the set of all positive real numbers
[with d(x, y) = |x — y|]. In cases of possible ambiguity, we can be more
precise and specify ‘‘convergent in X’ rather than ‘‘convergent.”

We recall that the set of all points p, (n =1, 2, 3, ...) is the range of {p,}.
The range of a sequence may be a finite set, or it may be infinite. The sequence
{p,} is said to be bounded if its range is bounded.

As examples, consider the following sequences of complex numbers
(that is, X = R?):

(a)
(b)
(c)
(d)
(e)

If s, = 1/n, thenlim,_, s, = 0; the range is infinite, and the sequence
is bounded.

If s, = n?, the sequence {s,} is unbounded, is divergent, and has
infinite range.

If s, =1+ [(— 1)"/n], the sequence {s,} converges to 1, is bounded,
and has infinite range.

If s, = i", the sequence {s,} is divergent, is bounded, and has finite
range.

Ifs,=1(n=1,2,3,...), then {s,} converges to 1, is bounded, and

has finite range.

We now summarize some important properties of convergent sequences
in metric spaces.

3.2 Theorem Let{p,} be a sequence in a metric space X.

(@)

(b)
(c)
(d)

{p,} converges to p € X if and only if every neighborhood of p contains
all but finitely many of the terms of {p,}.

If pe X, p' € X, and if {p,} converges to p and to p’, then p’ = p.

If {p,} converges, then {p,} is bounded.

If E c X and if p is a limit point of E, then there is a sequence {p,} in E
such that p =lim p, .

n— oo

Proof (0) Suppose p,—p and let VV be a neighborhood of p. For
some ¢ > 0, the conditions d(q, p) <e,qge X imply g € V. Correspond-
ing to this ¢, there exists N such that n > N implies d(p,, p) <e&. Thus
n > N implies p, e V.

Conversely, suppose every neighborhood of p contains all but

finitely many of the p,. Fix ¢ > 0, and let V' be the set of all g € X such
that d(p.q) < ¢. By assumption, there exists N (corresponding to this V)
such that p,e V if n>N. Thus d(p,,p) <e¢ if n=N; hence p,—p.
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(b) Let ¢ >0 be given. There exist integers N, N’ such that

3
n>N implies d(p,,p) < 5

n>N" implies d(p,,,p')<§-

Hence if n > max (N, N’), we have

d(p,p’) <d(p, p,) +d(p,,p’) <e.

Since ¢ was arbitrary, we conclude that d(p, p') = 0.
(c) Suppose p, —p. There is an integer N such that n > N
implies d(p,. p) < 1. Put

r=max {1, d(py, p), ..., d(py, P)}-

Thend(p,.p) <rforn=1,2,3,....

(d) For each positive integer n, there is a point p, € E such that
dp,,p) <1/n. Given € >0, choose N so that Ne>1. If n> N, it
follows that d(p,, p) <¢. Hence p, — p.

This completes the proof.

For sequences in R* we can study the relation between convergence, on
tthe one hand, and the algebraic operations on the other. We first consider
S sequences of complex numbers.

33.3 Theorem Suppose {s,}, {t,} are complex sequences, and lim,_ s, =,
Mim,_ 1, =1. Then

(@) lim(s,+1)=s5+1t;

n— oo

(b) limcs, =cs, lim(c + s,) = ¢ + s, for any number c;
n— oo n-— oo

(c) lims,t, = st;
n— oo

| I
(d) lim — =},provideds,,¢0 (n=1,2,3,...),and s # 0.

n— oo Sn
Proof
(a) Given ¢ > 0, there exist integers N,, N, such that

L £
n> N, implies |s,,-—s|<-2-,

£
n> N, implies |t,,—t|<§.
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If N =max (N,, N,), then n > N implies
S, + 1) =@+ <Z|s,—s| + |1, — ]| <e.
This proves (a). The proof of () is trivial.
(c) We use the identity
(1) Sufn — St = (8, — )ty — 1) + s(t, — 1) + U(s, — ).
Given ¢ > 0, there are integers N,, N, such that
n>N, implies |s,—s| < \/5,
n>N, implies |t,—1t| < \/E
If we take N = max (N,, N,), n > N implies

|(sn — $)(t, — )| <,
so that

lim (s, — s)(t, — t) = 0.

n— o

We now apply (a) and (b) to (1), and conclude that

lim (s,t, — st) =0.

n— a0

(d) Choosing m such that |s, — s| < {|s| if n > m, we see that

ls.| > %[s|  (n=m).

Given ¢ > 0, there is an integer N > m such that n > N implies
1 2
|s, —s| < 3|s|?e.
Hence, for n > N,

2
<rs—|§|s,,—s| <E.

S, — §

S,S

3.4 Theorem
(@) Suppose x,€ R*(n=1,2,3,...) and
Xp = (0 s oney O )

Then {x,} converges to x = (ay, ..., o) if and only if

n-—> oo
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(b) Suppose {x,},{y.} are sequences in R*, {B,} is a sequence of real numbers,
and X, > X,y, =Y, B, > B. Then

Iim(x, +y,)=X+Y, limx, y,=Xx"Y, lim B, x, = px.

n-=» o n—* oo n— oo

Proof
(@) If x, — x, the inequalities

| o

J,ﬂ_ajl < |X,,—X|,

which follow immediately from the definition of the norm in R*, show that
(2) holds.

Conversely, if (2) holds, then to each ¢ > 0 there corresponds an
integer N such that n > N implies

la; , — a] <—;—I-_c (1<j<k).
\
Hence n > N implies
k \'/?
|xn_xl = jZl'aj,n—ajlzl <e§g,

so that x, = x. This proves (a).
Part (b) follows from (a) and Theorem 3.3.

SUBSEQUENCES

3.5 Definition Given a sequence {p,}, consider a sequence {n,} of positive

integers, such that n, <n, <n; <---. Then the sequence {p,} is called a
subsequence of {p,}. If {p,} converges, its limit is called a subsequential limit
of {p.}.

It is clear that {p,} converges to p if and only if every subsequence of

{p,} converges to p. We leave the details of the proof to the reader.

3.6 Theorem

(@) If {p,} is a sequence in a compact metric space X, then some sub-
sequence of {p,} converges to a point of X.
(b) Every bounded sequence in R* contains a convergent subsequence.
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Proof
(a) Let E be the range of {p,}. If E is finite then there is a p € E and a
sequence {n;} with n, <n, <n; <---, such that

pn; =DPn, = """ =P

The subsequence {p, } so obtained converges evidently to p.

If E is infinite, Theorem 2.37 snows that E has a limit point p € X.
Choose n, so that d(p, p,,) < 1. Having chosen n,, ..., n;_;, we see from
Theorem 2.20 that there is an integer n; > n;_, such that d(p, p,) < 1/i.
Then {p,.} converges to p.

(b) This follows from (a), since Theorem 2.41 implies that every bounded
subset of R* lies in a compact subset of R*.

3.7 Theorem The subsequential limits of a sequence {p,} in a metric space X
form a closed subset of X.

Proof Let £* be the set of all subsequential limits of {p,} and let g be a
limit point of E*. We have to show that g € E*.
Choose n, so that p, #q. (If no such n; exists, then E* has only

one point, and there is nothing to prove.) Put é = d(q, p,,). Suppose
ny,....n;_, are chosen. Since g i1s a imit point of E*, there is an x € E*
with d(x,q) <27 6. Since x € E*, there is an n; > n;_, such that

d(x, p,) <27'6. Thus
d(q, p,) <2' 776
fori=1,2,3,.... This says that {p, } converges to g. Hence q € E*.

CAUCHY SEQUENCES

3.8 Definition A sequence {p,} in a metric space X is said to be a Cauchy
sequence if for every ¢ > 0 there is an integer N such that d(p,, p,) < eif n > N

and m > N.
In our discussion of Cauchy sequences, as well as in other situations

which will arise later, the following geometric concept will be useful.

3.9 Definition Let E be a subset of a metric space X, and let S be the set of
all real numbers of the form d(p, q), with pe E and qe E. The sup of Sis
called the diameter of E.
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If{p,}is a sequence in X and if Ey consists of the points py, Py +1>PN+25 - >

it is clear from the two preceding definitions that {p,} is a Cauchy sequence
if and only if

lim diam E = 0.

N-—-o

3.10 Theorem

3.11

(@) If E is the closure of a set E in a metric space X, then

diam E = diam E.
(b) If K, is a sequence of compact sets in X such that K,> K, .,
(n=1,23,..)and if

lim diam K, = 0,

n— o0

then (Y K, consists of exactly one point.

Proof
(a) Since E c E, it is clear that
diam E < diam E.

Fix ¢ > 0, and choose p € E, g € E. By the definition of E, there are
points p’, ¢', in E such that d(p, p’) < e, d(q,q’) < e. Hence

d(p,q) <d(p,p’)+d(p’ q") +d(q,q)
<2e+d(p’,q) <2e+ diam E.

It follows that
diam E <2¢ + diam E,

and since ¢ was arbitrary, (a) is proved.

(b)) Put K=(\¥K,. By Theorem 2.36, K is not empty. If K contains
more than one point, then diam K > 0. But for each n, K, = K, so that
diam K, > diam K. This contradicts the assumption that diam K, — 0.

Theorem

(a) Inany metric space X, every convergent sequence is a Cauchy sequence.

(b) If X is a compact metric space and if { p,} is a Cauchy sequence in X,
then {p,} converges to some point of X.

(c) In R*, every Cauchy sequence converges.

Note: The diffterence between the definition of convergence and
the definition of a Cauchy sequence is that the limit is explicitly involved
in the former, but not in the latter. Thus Theorem 3.11(b) may enable us
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(3)

3.12
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to decide whether or not a given sequence converges without knowledge
of the limit to which it may converge.

The fact (contained in Theorem 3.11) that a sequence converges in
R* if and only if it is a Cauchy sequence is usually called the Cauchy
criterion for convergence.

Proof

(a) If p, - p and if ¢ > 0, there is an integer N such that d(p, p,) < ¢
for all n > N. Hence

d(pn ’ pm) < d(Pn ’ P) + d(p, pm) <2¢

as soonasn> N and m > N. Thus {p,} is a Cauchy sequence.

(b) Let {p,} be a Cauchy sequence in the compact space X. For
N=1,23, ..., let Ey be the set consisting of pn, Pn+1> PN42> - -
Then

lim diam E, = 0,

N- o
by Definition 3.9 and Theorem 3.10(a). Being a closed subset of the
compact space X, each Ey is compact (Theorem 2.35). Also Ey > Ex, ;.
so that Ey o Ey ;.

Theorem 3.10(b) shows now that there is a unique p € X which lies
in every Ey.

Let ¢e>0 be given. By (3) there is an integer N, such that
diam Ey <¢ if N> N,. Since p € Ey, it follows that d(p,q) <¢ for
every g € E5, hence for every g € Ey. In other words, d(p, p,) < ¢ if
n > N,. This says precisely that p, — p.

(c) Let {x,} be a Cauchy sequence in R*. Define Ey as in (b), with x,
in place of p;. For some N, diam Ey < 1. The range of {x,} is the union
of Ey and the finite set {x,,..., Xy_;}. Hence {x,} is bounded. Since
every bounded subset of R* has compact closure in R* (Theorem 2.41),
(c) follows from (b).

Definition A metric space in which every Cauchy sequence converges is

said to be complete.

Thus Theorem 3.11 says that all compact metric spaces and all Euclidean

spaces are complete. Theorem 3.11 implies also that every closed subset E of a
complete metric space X is complete. (Every Cauchy sequence in E is a Cauchy
sequence in X, hence it converges to some p € X, and actually p € E since E is
closed.) An example of a metric space which is not complete is the space of all
rational numbers, with d(x, y) = |x — y|.



NUMERICAL SEQUENCES AND SERIES 55

Theorem 3.2(c) and example (d) of Definition 3.1 show that convergent
sequences are bounded, but that bounded sequences in R* need not converge.
However, there is one important case in which convergence is equivalent to
boundedness; this happens for monotonic sequences in R!.

3.13 Definition A sequence {s,} of real numbers is said to be

(@) monotonically increasing if s, < s,,,(n=1,2,3,...);
(b) monotonically decreasing if s, > s,,,(n=1,2,3,...).

The class of monotonic sequences consists of the increasing and the
decreasing sequences.

3.14 Theorem Suppose {s,} is monotonic. Then {s,} converges if and anly if it
is bounded.

Proof Suppose s, < s,,; (the proof is analogous in the other case).
Let E be the range of {s,}. If {s,} is bounded, let s be the least upper
bound of E. Then

S, < S n=1,2,3,...).
For every ¢ > 0, there is an integer /N such that
S—E<Sy <,

for otherwise s — ¢ would be an upper bound of E. Since {s,} increases,
n > N therefore implies

§—€e<s, <s,

which shows that {s,} converges (to s).
The converse follows from Theorem 3.2(c¢).

UPPER AND LOWER LIMITS

3.15 Definition Let {s,} be a sequence of real numbers with the following
property: For every real M there is an integer N such that n > N implies

S, = M. We then write
Sy, = + 0.

Similarly, if for every real M there is an integer N such that n > N implies
S, < M, we write

S, — — 0.
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It should be noted that we now use the symbol — (introduced in Defini-
tion 3.1) for certain types of divergent sequences, as well as for convergent
sequences, but that the definitions of convergence and of limit, given in Defini-
tion 3.1, are in no way changed.

3.16 Definition Let {s,} be a sequence of real numbers. Let E be the set of
numbers x (in the extended real number system) such that s, — x for some
subsequence {s,, }. This set E contains all subsequential limits as defined in
Definition 3.5, plus possibly the numbers + 00, — 00,

We now recall Definitions 1.8 and 1.23 and put

s* = sup E,
S* - il‘lf E.

The numbers s*, s, are called the upper and lower limits of {s,}; we use the
notation

lim sup s, = s*, lim inf 5, = s,.
3.17 Theorem Let {s,} be a sequence of real numbers. Let E and s* have the
same meaning as in Definition 3.16. Then s* has the following two properties:

(a) s*eE.
(b) If x > s*, there is an integer N such that n > N implies s, < x.

Moreover, s* is the only number with the properties (a) and (b).

Of course, an analogous result is true for s,.
Proof

(a) Ifs* = + o0, then E is not bounded above; hence {s,} is not bounded
above, and there is a subsequence {s,,} such that s, — + c0.

If s* is real, then E is bounded above, and at least one subsequential
limit exists, so that (a) follows from Theorems 3.7 and 2.28.

If s* = — o0, then E contains only one element, namely — oo, and
there is no subsequential limit. Hence, for any real M, s, > M for at
most a finite number of values of n, so that s, = — c0.

This establishes (a) in all cases.

(b) Suppose there is a number x > s* such that s, > x for infinitely
many values of n. In that case, there i1s a number y € E such that
y = x > s*, contradicting the definition of s*.

Thus s* satisfies (@) and (b).

To show the uniqueness, suppose there are two numbers, p and g,
which satisfy (@) and (b), and suppose p < g. Choose xsuchthatp < x <gq.
Since p satisfies (b), we have s, < x forn > N. But then g cannot satisfy (a).
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3.18 Examples

(@) Let {s,} be a sequence containing all rationals. Then every real
number is a subsequential limit, and

lim sup s, = + 00, liminfs, = —o0.
(b) Lets,=(—1"[1 + (1/n)]. Then
limsup s, =1, liminfs, = —1.

(¢) For a real-valued sequence {s,}, lim s, = s if and only if

n— o

lim sup s, = liminfs, = s.
n— oc n— oo
We close this section with a theorem which is useful, and whose proof is
quite trivial:

3.19 Theorem Ifs,<t, forn > N, where N is fixed, then

liminfs, <lim inf ¢,,

n— oo n—aoC

lim sup s, < lim sup ¢,.

n—ao n— oo

SOME SPECIAL SEQUENCES

We shall now compute the limits of some sequences which occur frequently.
The proofs will all be based on the following remark: If 0 < x, < s, for n > N,
where N is some fixed number, and if s, =0, then x, = 0.

3.20 Theorem

1
(@) If p >0, then lim — = 0.

n-»wn

) Ifp>0, thenlim ?/p=1.

n—x

(¢) limn=1.

n— oo
a

(d) If p>0andaisreal, then lim k = 0.

n-o (1 + p)°
() If |x| <1, then lim x" = 0.

n— oo
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Proof

(@ Take n > (1/e)'/?. (Note that the archimedean property of the real
number system is used here.)

®) If p>1, put x,=3p—1. Then x,>0, and, by the binomial
theorem,

l1+nx,<( +x,)"=p,
so that

p—1

O<x, <
n

Hence x, =+ 0. If p =1, (b) is trivial, and if 0 < p < 1, the result is obtained
by taking reciprocals.

(c) Putx, = \"/ n—1. Then x, = 0, and, by the binomial theorem,

n(n—1)
2

OSx,,S/ 2 (n > 2).
n—1

(d) Let k be an integer such that k > a, k > 0. For n > 2k,
nn—1)---(n—k+1) , nPp

n=_(1+x,) > x2.

Hence

1+p>@p= P P> e
Hence
n* 2!
0< < ——n*"k n> 2k
(1+p) P ( )

Since a — k <0, n*~% =0, by (a).
(e) Take x =0 in (d).

SERIES

In the remainder of this chapter, all sequences and series under consideration
will be complex-valued, unless the contrary is explicitly stated. Extensions of
some of the theorems which follow, to series with terms in R*, are mentioned
in Exercise 15.
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3.21 Definition Given a sequence {a,}, we use the notation

Y a, (P<9q)

to denote the sum a, +a,,, + - +a,. With {a,} we associate a sequence
{s,}, where

n
Sp =) Q.
k=1
For {s,} we also use the symbolic expression

al +az+a3+°"
or, more concisely,

@ 3 a,.

The symbol (4) we call an infinite series, or just a series. The numbers
s, are called the partial sums of the series. If {s,} converges to s, we say that
the series converges, and write

a,=s.

M8

n=1

The number s is called the sum of the series; but it should be clearly under-
stood that s is the limit of a sequence of sums, and is not obtained simply by
addition.

If {s,} diverges, the series is said to diverge.

Sometimes, for convenience of notation, we shall consider series of the
form

(5) nia,, .

And frequently, when there is no possible ambiguity, or when the distinction
is immaterial, we shall simply write Za, in place of (4) or (5).

It is clear that every theorem about sequences can be stated in terms of
series (putting @, =s,, and a, = s, — s,-, for n > 1), and vice versa. But it is
nevertheless useful to consider both concepts.

The Cauchy criterion (Theorem 3.11) can be restated in the following
form:

3.22 Theorem Xa, converges if and only if for every ¢ > 0 there is an integer
N such that

(6)
ifm>n2>N.

<&

m
2 4
k=n
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In particular, by taking m = n, (6) becomes
la,| <e (n=N).
In other words:

3.23 Theorem If Xa, converges, then lim,_, . a, = 0.

The condition a, — 0 is not, however, sufficient to ensure convergence
of Xa,. For instance, the series

o ]
P

diverges; for the proof we refer to Theorem 3.28.

Theorem 3.14, concerning monotonic sequences, also has an immediate
counterpart for series.

3.24 Theorem A series of nonnegative® terms converges if and only if its
partial sums form a bounded sequence.

We now turn to a convergence test of a different nature, the so-called
“‘comparison test.”’

3.25 Theorem

(@) If |a,| <c, for n > Ny, where N, is some fixed integer, and if Xc,
converges, then Xa, converges.
() Ifa,>d, >0 forn>N,, and if Zd, diverges, then Za, diverges.

Note that (b) applies only to series of nonnegative terms a, .

Proof Given ¢ > 0, there exists N > N, such that m > n > N implies

m
Y ¢ <¢,
k=n

by the Cauchy criterion. Hence

m
D ay
k=n

Ms

m
< !akl Szckse,
k k=n

and (a) follows.

Next, (b) follows from (a), for if Xa, converges, so must Xd, [note
that () also follows from Theorem 3.24].

1 The expression ‘‘ nonnegative’’ always refers to real numbers.
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The comparison test is a very useful one; to use it efficiently, we have to
become familiar with a number of series of nonnegative terms whose conver-
gence or divergence is known.

SERIES OF NONNEGATIVE TERMS

The simplest of all is perhaps the geometric series.
3.26 Theorem If0 < x <1, then

o 1
> x" =
n=0 1

If x > 1, the series diverges.

Proof If x #1,

The result follows if we let n - 0. For x =1, we get
l1+14+14+---,
which evidently diverges.
In many cases which occur in applications, the terms of the series decrcase
monotonically. The following theorem of Cauchy is therefore of particular

interest. The striking feature of the theorem is that a rather ‘‘thin’ subsequence
of {a,} determines the convergence or divergence of Xa,.

3.27 Theorem Suppose a, >a, > ay>-"">0. Then the series > 7., a, con-
verges if and only if the series

(7) S Xay = a, +2a, + 4a, + 8ag + -
k=0

converges.

Proof By Theorem 3.24, it suffices to consider boundedness of the
partial sums. Let

Sps =@ ta +° - +a,,
t=a, +2a, + - + 2*a,.
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For n < 2,
Sp<a;+(@+a3)+ - +@pu+ -+ ayui1_y)
<a; +2a, + -+ 2*a,.
= I,

so that
(8) S, < 1.

On the other hand, if n > 2,
S, =a; +a, +(ay+ ag) + -+ (@a-14¢0 + 0 + az)
>1la, +a,+2a, + -+ 2 a,

Ly s

N

so that
) 25, > t,.

By (8) and (9), the sequences {s,} and {r,} are either both bounded
or both unbounded. This completes the proof.

]
3.28 Theorem } — converges if p > 1 and diverges if p < 1.
n

Proof If p <0, divergence follows from Theorem 3.23. If p >0,
Theorem 3.27 is applicable, and we are led to the series

1

2k

18

(0 0]
— Z 21 -pk

k=0 k=0

Now, 2' P <1 if and only if 1 — p <0, and the result follows by com-
parison with the geometric series (take x = 2' “? in Theorem 3.26).
As a further application of Theorem 3.27, we prove:

3.29 Theorem I[fp>1,

& 1

(10) >

n=2 h(log n)?

converges; if p < 1, the series diverges.

Remark ‘‘log n”’ denotes the logarithm of n to the base e (compare Exercise 7,
Chap. 1); the number e will be defined in a moment (see Definition 3.30). We
let the series start with n = 2, since log 1 = 0.
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Proof The monotonicity of the logarithmic function (which will be
discussed in more detail in Chap. 8) implies that {log n} increases. Hence
{l/nlogn} decreases, and we can apply Theorem 3.27 to (10); this
leads us to the series

ol 1 X 1 1 ® 1
1 1 2k ° - - )
(n ,;1 2*(log 2%)? k; (klog2)y” (log 2)”;(; kP

and Theorem 3.29 follows from Theorem 3.28.

This procedure may evidently be continued. For instance,

© 1
(12) >

n=anlognloglogn

diverges, whereas

0 1
13
(13) ,,Z‘;;n log n(log log n)?

converges.

We may now observe that the terms of the series (12) differ very little
from those of (13). Still, one diverges, the other converges. If we continue the
process which led us from Theorem 3.28 to Theorem 3.29, and then to (12) and
(13), we get pairs of convergent and divergent series whose terms differ even
less than those of (12) and (13). One might thus be led to the conjecture that
there is a limiting situation of some sort, a ‘‘boundary’ with all convergent
series on one side, all divergent series on the other side—at least as far as series
with monotonic coefficients are concerned. This notion of ‘‘boundary’ is of
course quite vague. The point we wish to make is this: No matter how we make
this notion precise, the conjecture is false. Exercises 11(b) and 12(b) may serve
as illustrations.

We do not wish to go any deeper into this aspect of convergence theory,
and refer the reader to Knopp’s ‘““Theory and Application of Infinite Series,”
Chap. IX, particularly Sec. 41.

THE NUMBER e

o ]
3.30 Definition ¢ =

n=0n!

Heren'!=1-2-3---nifn>1,and 0! =1.
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Since

sp=1+1+ ! + .
" 12 1-2-3 121

1 1
<1 +l+5+2—2+---+2n_1<3,
the series converges, and the definition makes sense. In fact, the series converges
very rapidly and allows us to compute e with great accuracy.
It is of interest to note that e can also be defined by means of another
limit process; the proof provides a good illustration of operations with limits:

1 n
3.31 Theorem Ilim (1 +’-1) = e.

n-* oo

Proof Let

By the binomial theorem,

1 ] 1 1 2
t = — —-—— e — — -_— o=
n 1+1+2!(l n)+3!(1 n)(l n)-i-

Hence ¢, < s,, so that
(149) limsup ¢, <e,

n-*ao0

by Theorem 3.19. Next, if n > m,

1 1 1 1 m—1
t,.21+1+—(1—-)+---+—(1—-)--- |- )
2! n m! n n

Let n — o0, keeping m fixed. We get

1
liminft,,21+1+§-'+“'+—,

n—x

so that
S, <liminfzt,.

n—+x

Letting m — o, we finally get

(15) e <liminft,.

n— .

The theorem follows from (14) and (15).
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g : : : 1 :
The rapidity with which the series ) — converges can be estimated as
n!

follows: If s, has the same meaning as above, we have

1 1 1

—_— — + e oo
T T+ ! (n+2)!+(n+3)!+
<! {1+ L .
(n + 1)! n+1  (n+1)? | nn
so that
1
(16) O<e—s,<—-
n'n

Thus s,,, for instance, approximates e with an error less than 1077, The
inequality (16) is of theoretical interest as well, since it enables us to prove the
irrationality of e very easily.

3.32 Theorem e is irrational.

Proof Suppose e is rational. Then e = p/q, where p and g are positive
integers. By (16),

1
(17) 0<qgle—s,)<--
q

By our assumption, g'e is an integer. Since

1 1
q!sq=q!(1 + 1 +ﬁ+'“+a)

is an integer, we see that g!(e — s,) is an integer.
Since g > 1, (17) implies the existence of an integer between 0 and 1.
We have thus reached a contradiction.

Actually, e is not even an algebraic number. For a simple proof of this,
see page 25 of Niven’s book, or page 176 of Herstein’s, cited in the Bibliography.

THE ROOT AND RATIO TESTS

3.33 Theorem (Root Test) Given Xa,, put o = lim sup \"/ IT,,I.
Then

(@) ifa <1, Za, converges;
(b) if a>1, Xa, diverges;
(¢) ifa =1, the test gives no information.



66 PRINCIPLES OF MATHEMATICAL ANALYSIS

3.34

Proof If a <1, we can choose f so that « < 8 <1, and an integer N

such that
Nal <B
for n > N [by Theorem 3.17(b)]. That is, n > N implies

|a.| < B".

Since 0 < f <1, 8" converges. Convergence of Xa, follows now from
the comparison test.

If @ > 1, then, again by Theorem 3.17, there is a sequence {n,} such
that

n\k/lankl - Q.

Hence |a,| > 1 for infinitely many values of n, so that the condition
a, =0, necessary for convergence of Xa,, does not hold (Theorem 3.23).
To prove (c¢), we consider the series

sl 51
n “~n
For each of these series @ = 1, but the first diverges, the second converges.

Theorem (Ratio Test) The series Xa,

q .
n+1 <l,

(@) converges if lim sup
n-* a0

a,

an +1
a,

(b) diverges if > 1 for n > ngy, where ny is some fixed integer.

Proof If condition (a@) holds, we can find f < 1, and an integer N, such
that

for n > N. In particular,

lay+1| < Blanl,
lan+2] < Blay+1| < B*lanl,

laN+pI < ﬁplaN|°
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That is,

|a,| < |an|Bp~" - B"

for n > N, and (a) follows from the comparison test, since £f" converges.
If |a,,,| = |a,| for n > no, it is easily seen that the condition a, -0
does not hold, and (b) follows.

Note: The knowledge that lima,,,/a, =1 implies nothing about the
convergence of Xa,. The series £1/n and 1/n*> demonstrate this.
3.35 Examples

(a) Consider the series

l+1+1+1+1+1+1+1+---
2 3 2% 32723733 24 34"

for which

lim inf 22*! = Lim (3) =0,

R-* © a, n— o 3

211
lim inf %a, = lim*"|— = —,
| o) n-* a0 3" \/5

. R/ e 2B 1 =__l__,
lim sup \/a,,— lim > \/i

n—*a A= ©

lim sup =*! = lim (-) = + 0.

n-* o0 a” n=* o0 2

The root test indicates convergence; the ratio test does not apply.
(b) The same is true for the series

SIS PSP I ISP
2 8 4 32 16 128 64 ’
where
lim inf 22*! = l,
R— a, 8
an+l_
hr’?_'.:lp a =2,
but
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3.36 Remarks The ratio test is frequently easier to apply than the root test,
since it is usually easier to compute ratios than nth roots. However, the root
test has wider scope. More precisely: Whenever the ratio test shows conver-
gence, the root test does too; whenever the root test is inconclusive, the ratio
test is too. This is a consequence of Theorem 3.37, and is illustrated by the
above examples.

Neither of the two tests is subtle with regard to divergence. Both deduce
divergence from the fact that a, does not tend to zero as n — oo.

3.37 Theorem [For any sequence {c,} of positive numbers,

Co+1

lim inf < lim inf\"/—c::.,

n— o0 n n— oo

cn+l

lim sup \”/c_,, < lim sup

n-— oo n— o0 n

Proof We shall prove the second inequality; the proof of the first is
quite similar. Put

Cnt+1

o = lim sup
n—© Cn

If « = + 00, there is nothing to prove. If o is finite, choose f# > a. There
is an integer NN such that

for n > N. In particular, for any p > 0,
Cn+it1 S Pen sk (k=0,1,....,p—1).
Multiplying these inequalities, we obtain

cN+p —<—ﬂch’

or
c, <cyB~N-B (n=N).
Hence
\"/E';S\"/CMB:N'&
so that
(18) lim sup /¢, < B,

B— O
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by Theorem 3.20(b). Since (18) is true for every > «, we have
lim sup /¢, < a.

n—aoC

POWER SERIES

3.38 Definition Given a sequence {c,} of complex numbers, the series

a0
(19) Y ¢, 2"

n=0
is called a power series. The numbers c, are called the coefficients of the series;
z is a complex number.

In general, the series will converge or diverge, depending on the choice
of z. More specifically, with every power series there is associated a circle, the
circle of convergence, such that (19) converges if z is in the interior of the circle
and diverges if z is in the exterior (to cover all cases, we have to consider the
plane as the interior of a circle of infinite radius, and a point as a circle of radius
zero). The behavior on the circle of convergence is much more varied and can-

not be described so simply.

3.39 Theorem Given the power series Xc, z", put

1
a = lim sup &/ |c,|, R="

n-— oo

(Ifa=0,R= +0;ifa= +00, R=0.) Then Xc,z" converges if |z| <R, and
diverges if |z| > R.

Proof Put a, =c,z", and apply the root test:

2|

lim sup &/ |a,| = |z| lim sup /| ¢, | ="

n— oo n-— o0

Note: R is called the radius of convergence of Zc, z".

3.40 Examples

(a) The series Zn"z" has R =0,

. 4 . . . .
() The series Z—'- has R = +00. (In this case the ratio test is easier to
n!

apply than the root test.)
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(¢) The series £z" has R=1. If |z| =1, the series diverges, since {z"}
does not tend to 0 as n — oo.

(d) The series ZZ; has R=1. It diverges if z=1. It converges for all
other z with |z| = 1. (The last assertion will be proved in Theorem 3.44.)

(e) The series Z:—z has R =1. It converges for all z with |z| =1, by

the comparison test, since |z"/n?| = 1/n?.

SUMMATION BY PARTS

3.41 Theorem Given two sequences {a,}, {b,}, put

n
An = Z aj
k=0

ifn>0;put A_, =0. Then, if 0 < p <q, we have

(20)

q q-1
Y ayby=Y An(by — bpsy) + Ap, — A,_1b,.
n= n=p

p

q q q q—1
Zanbn=Z(An_An—l)bn=zAnbn— Z Anbn+la
= = n=p

n=p n=p n=p-1

and the last expression on the right is clearly equal to the right side of
(20).

Formula (20), the so-called “‘partial summation formula,”’ is useful in the

investigation of series of the form Xa, b,, particularly when {4,} is monotonic.
We shall now give applications.

3.42

Theorem Suppose

(a) the partial sums A, of Xa, form a bounded sequence;
b) bo=by=2b,=>-"";
(¢) limb, =0.

n— o0

Then Xa,b, converges.
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Proof Choose M such that |A4,| < M for all n. Given ¢ > 0, there is an
integer N such that by < (¢/2M). For N < p <g, we have

q
Zanbn
n=p

q—1
’;pA,,(b,, —byy)) + Agb, — A,_b,

<M

qg—1
Z (bn - bn-l-l) + bq + bp
n=p

- 2Mbp _<_. 2Mb~ S E.

Convergence now follows from the Cauchy criterion. We note that the

first inequality in the above chain depends of course on the fact that
bn - bn+l 2 0.

Theorem Suppose

@ |a| 2|e| 2]es| =2
(b) Cam-1 20’ chSO (m=1’2’ 3»**‘);
(¢ lim,,,c,=0.

Then Xc, converges.

Series for which (b) holds are called ‘‘alternating series’’; the theorem was

known to Leibnitz.

3.44

Proof Apply Theorem 3.42, with a, = (—1)"*1,b, = |c,|.

Theorem Suppose the radius of convergence of Xc,z" is 1, and suppose

Co=Cy=>¢,>0,lim,,,c,=0. Then Xc,z" converges at every point on the
circle |z| =1, except possibly at z = 1.

Proof Put a,=Zz", b, = c,. The hypotheses of Theorem 3.42 are then
satisfied, since

if |z| =1,z# 1.

ABSOLUTE CONVERGENCE

The series Xa, is said to converge absolutely if the series X|a,| converges.

3.45

Theorem If Xa, converges absolutely, then Ta, converges.
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Proof The assertion follows from the inequality

m m
Zak < Zlakl’
k=n n=k

plus the Cauchy criterion.

3.46 Remarks For series of positive terms, absolute convergence is the same
as convergence.

If Za, converges, but X|a,| diverges, we say that Xa, converges non-
absolutely. For instance, the series

-1
Z( )

n

converges nonabsolutely (Theorem 3.43).

The comparison test, as well as the root and ratio tests, is really a test for
absolute convergence, and therefore cannot give any information about non-
absolutely convergent series. Summation by parts can sometimes be used to

handle the latter. In particular, power series converge absolutely in the interior
of the circle of convergence.

We shall see that we may operate with absolutely convergent series very
much as with finite sums. We may multiply them term by term and we may
change the order in which the additions are carried out, without affecting the
sum of the series. But for nonabsolutely convergent series this is no longer true,
and more care has to be taken when dealing with them.

ADDITION AND MULTIPLICATION OF SERIES

3.47 Theorem If Xa,= A, and Xb,=B, then X(a,+b,)=A+ B, and
Xca, = cA, for any fixed c.

Proof Let

Then

An + Bn = Z (ak + bk)‘
k=0

Since lim,, , A4, = A and lim,_, , B, = B, we see that

lim (4, + B,) = A + B.

n— oo

The proof of the second assertion is even simpler.
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Thus two convergent series may be added term by term, and the result-
i1ing series converges to the sum of the two series. The situation becomes more
ccomplicated when we consider multiplication of two series. To begin with, we

lhave to detine the product. This can be done in several ways; we shall consider
{the so-called “Cauchy product.”

:3.48 Definition Given Xa, and Xb,, we put

=Y ab,_, (=0,1,2..)
k=0

¢and call Zc, the product of the two given series.
This definition may be motivated as follows. If we take two power

«series Za,z" and Tb,z", multiply them term by term, and collect terms contain-
1ing the same power of z, we get

irs

a,z"* Y b,z"=(ap+az+ a2 + )by + byz + byz* +-°)
n n=0
= aobo + (ao bl + albo)z + (aobz + albl +azb0)22 +
=cot+c,z+c,z22 40

. Setting z = 1, we arrive at the above definition.

.3.49 Example If

A,=Zak, B,,=Zbk, C,,=ZC,‘,
k=0 k=0

and A, — A, B, — B, then it is not at all clear that {C,} will converge to AB,
since we do not have C, = A, B,. The dependence of {C,} on {A4,} and {B,} is
quite a complicated one (see the proof of Theorem 3.50). We shall now show
that the product of two convergent series may actually diverge.

The series

1 1 1
S T ——
w=0/n + 1 J2 3 U4
converges (Theorem 3.43). We form the product of this series with itself and

obtain

(0 o]

1 1

L= (\/12 ¥ \/12) ¥ (73 Yt \/13)

1 1 1 1
—(\/&+J§J2+\/2\/3+J4)+ ’
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so that
1
=(—1
| w={= )Z\/(n—k+1)(k+l)
Since ) , ] » i )
R S L P
we have

2 2(n+l)
on+2 n+2

u|zz

so that the condition ¢, =0, which is necessary for the convergence of Xc,, is
not satisfied.

]

In view of the next theorem, due to Mertens, we note that we have here
considered the product of two nonabsolutely convergent series.

3.50 Theorem Suppose

(@) Z a, converges absolutely,

®) Z -
© ¥ b=
d) Z (n=0,1,2,..))
Then
i ¢, = AB
n=0

That is, the product of two convergent series converges, and to the right
value, if at least one of the two series converges absolutely.

Proof Put

A4,=Ya, B,=Yb, Co=Yc¢, B.=B, 8.
k=0 k=0 k=0
Then
C,=aobo + (aoby + ayby) + -+ (ap b, + ayb,—, + *** + a,by)
=aogB,+a; B,y + "+ a,By
=ao(B + B,) + a1(B + Pu-1) + -+ + ax(B + Po)
=A,B + aoB, + a;B,-1 + '+ + a,B
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Put
Y = aOﬂn +alﬂn—l + 0+ anﬂ0°

We wish to show that C, » AB. Since A,B — AB, it suffices to
show that

(21) lim y, = 0.

n— a0
Put

a=) |a,l.
n=0
[It is here that we use (a).] Let ¢ > 0 be given. By (c¢), B, = 0. Hence we
can choose N such that |8,| < ¢ for n > N, in which case
lynl < |ﬁoan + -+ BNan—Nl + IBN+lan-N-l + - +ﬂnaO|
< |ﬂ0a,, + - 4+ ﬂNan—Nl + &eo.

Keeping N fixed, and letting n — oo, we get

lim sup |y,| < ea,

n— oo

since a, =+ 0 as k = o0. Since ¢ is arbitrary, (21) follows.

Another question which may be asked is whether the series Xc,, if con-
vergent, must have the sum AB. Abel showed that the answer is in the affirma-
tive.

3.51 Theorem If the series ZXa,, Xb,, Xc, converge to A, B, C, and
c,=aogb, + - +a,by, then C = AB.

Here no assumption is made concerning absolute convergence. We shall

give a simple proof (which depends on the continuity of power series) after
Theorem 8.2.

REARRANGEMENTS

3.52 Definition Let {k,},n=1,2,3,..., be a sequence in which every
positive integer appears once and only once (that is, {k,} is a 1-1 function from
J to J, in the notation of Definition 2.2). Putting

a,=a, (1=1,23,..),

we say that Za, is a rearrangement of Xa, .
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If {s,}, {s,} are the sequences of partial sums of Xa,, Xa,, it is easily seen
that, in general, these two sequences consist of entirely different numbers.
We are thus led to the problem of determining under what conditions all
rearrangements of a convergent series will converge and whether the sums are
necessarily the same.

3.53 Example Consider the convergent series

(22) I-3+5-23+4-23+--

and one of its rearrangements

(23) I+i-t+d+7-d+s+r -4+

in which two positive terms are always followed by one negative. If s is the
sum of (22), then

s<l1—-4+1=2%.
Since
: + : : >0
4k -3 4k -1 2%k
for kK > 1, we see that 55 < s¢ <59 <--, where s, i1s nth partial sum of (23).
Hence

lim sup s, > 55 = 2,

n— o

so that (23) certainly does not converge to s [we leave it to the reader to verify
that (23) does, however, converge].
This example illustrates the following theorem, due to Riemann.

3.54 Theorem Let Xa, be a series of real numbers which converges, but not
absolutely. Suppose

—0<a<p<oo.

Then there exists a rearrangement Xa, with partial sums s, such that

(29) lim inf s, = a, lim sup s, = B.
Proof Let
+ -_—
Pn= |an| an, q, = Ianl “n (n=1,2, 3,)

2 2
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Then p, —q,=a,,py +q, = |ay|, P, 20,9,20. The series Zp,, Zg,
must both diverge.
For if both were convergent, then

Z(pn +9,) = Zla,|

would converge, contrary to hypothesis. Since
N

Z a, = ;l (p,.—q,,)= =Zl Pn — Zl qn >

n=1

divergence of Xp, and convergence of Xg, (or vice versa) implies diver-
gence of Xa,, again contrary to hypothesis.

Now let P,, P,, P;, ... denote the nonnegative terms of Xa,, in the
order in which they occur, and let Q,, Q,, Q;, ... be the absolute values
of the negative terms of Xa,, also in their original order.

The series ZP,, X0, differ from Zp,, £q, only by zero terms, and
are therefore divergent.

We shall construct sequences {m,}, {k,}, such that the series

P+ +P,, —Or— = Qi +Pp sy +
+PM2_Qk1+1 - = Qk2+...9

which clearly is a rearrangement of Xa,, satisfies (24).
Choose real-valued sequences {«,}, {f,} such that a, —>a, B, = B,

o < Bn ’ ﬁl > 0
Let m,, k, be the smallest integers such that

Pl+‘..+Pml>ﬁl,
Po+-+P, —0,— =0, <ay;

let m,, k, beé the smallest integers such that

P1+'°'+Pm,—Q1_"'—Qk,+Pn.,+1+"'+Pm2>ﬁza
Pl+.“+Pm1_Ql_'”_Qk|+Pm1+l+.”+Pm2_Qk1+l

— = O, < ay;

and continue in this way. This is possible since £P, and X0, diverge.
If x,, y, denote the partial sums of (25) whose last terms are P, ,

— Oy, » then
|xn—ﬁn| SPm,u Iyn_anl San‘

Since P, -0 and Q, —0 as n — oo, we see that x, =, y, — a.
Finally, it is clear that no number less than a or greater than 8 can
be a subsequential limit of the partial sums of (29).
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3.55 Theorem IfXa, is a series of complex numbers which converges absolutely,
then every rearrangement of Xa, converges, and the* all converge to the same sum.

(26)

Proof Let Xa, be a rearrangement, with partial sums s,. Given ¢ > 0,
there exists an integer N such that m > n > N implies

m
Z la;| <e.
I=n

Now choose p such that the integers 1, 2, ..., N are all contained in the
set ky, k,, ..., k, (we use the notation of Definition 3.52). Then if n > p,
the numbers a,, ..., ay will cancel in the difference s, —s,, so that

|s, —s,| <e¢, by (26). Hence {s,} converges to the same sum as {s,}.

EXERCISES

1. Prove that convergence of {s.} implies convergence of {|s.|}. Is the converse true?
2. Calculate lim (Vn% + n— n).

n — oo

3. If 5, = Vi, and

sn+1=V2+ \/;,—, (n=192,39---)9

prove that {s.} converges, and that s,2 for< n=1,2,3,....
4. Find the upper and lower limits of the sequence {s.} defined by

S2am-1 1
S1=0; SZm——— . SZm+1=-+52m.

2’ 2

5. For any two real sequences {a.}, {ba}, prove that

lim sup (a, + b,) <lim sup a, + lim sup b,,

n—+ o n -0 n -+ 0

provided the sum on the right is not of the form o0 — oo,
6. Investigate the behavior (convergence or divergence) of Za, if

(@) a, =Vn+1—Vn;

(b) an

=\/n—|-1—\/;.

n

) an=(Vn— 1)

1

(d) a, = for complex values of z.

14 zv’

7. Prove that the convergence of 2a, implies the convergence of

Va,

n

2

if a, = 0.
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If Za, converges, and if {b.} is monotonic and bounded, prove that Za, b, con-
verges.

Find the radius of convergence of each of the following power series:

2!!
(@) 2. n’z", b) 272"

2" n?
(o) ZFZ", (d) 2-3-;,2".

Suppose that the coefficients of the power series > a, z" are integers, infinitely many
of which are distinct from zero. Prove that the radius of convergence is at most 1.
Suppose a, >0, s, =a, + - + a,, and Za, diverges.

(a) Prove that > i i"an diverges.
(b) Prove that
an +1 +...+aN+k >1— SN
SN+1 SN +k SN +k
and deduce that Z%diverges.
(c¢) Prove that
dn 1 1
a7

A Sn-l sn

an
and deduce that Z? converges.

(d) What can be said about

dn

Zl-i—na,.

an
and 3157

Suppose a, > 0 and XZa, converges. Put

Fn= zam
(a) Prove that
Im g L L
r'm Vn 'm

if m < n, and deduce that >_ ﬁdiverges.

Fn
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(b) Prove that

a, —
Vo <2Vri— Vi)
a
and deduce that >’ v converges.
r'n
13. Prove that the Cauchy product of two absolutely convergent series converges

absolutely.
14. If {s,} is a complex sequence, define its arithmetic means o, by

=SO+SI+“'+SII
n+1

On (n=0,1,2,...).

(a) If lim s, = s, prove that lim o, = s.

(b) Construct a sequence {s,} which does not converge, although lim o, =0.

(c) Canithappen thats, > 0for all n and that lim sup s, = oo, although lim ¢, =07?
(d) Put a, = s, — sa-1, for n >1. Show that

1 n

o + 1 kglkak .

Sn_0"=

Assume that lim (na,) = 0 and that {o.} converges. Prove that {s,} converges.
[This gives a converse of (a), but under the additional assumption that na,— 0.]
(e) Derive the last conclusion from a weaker hypothesis: Assume M < oo,
|na,| < M for all n, and lim o, = 0. Prove that lim s, = o, by completing the
following outline:

If m < n, then

1 n
mr (0',, — Om) + '_"_1 Z (Sn — Sl).
n— l=m+1

Sn—O’,,=

For these i,

(n— )M (n—m-—1)M
S *
i+ 1 m-+ 2

Isn—sil S

Fix ¢ > 0 and associate with each n the integer m that satisfies

n—e&

m< <m-+ 1.

1 + ¢

Then (m + 1)/(n — m) < 1/e and |s, — s:| < Me. Hence

lim sup|s, — | < Me.

n -+ oo

Since € was arbitrary, lim s, = o.
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Definition 3.21 can be extended to the case in which the a, lie in some fixed R*.
Absolute convergence is defined as convergence of £|a,|. Show that Theorems
3.22, 3.23, 3.25(a), 3.33, 3.34, 3.42, 3.45, 3.47, and 3.55 are true in this more
general setting. (Only slight modifications are required in any of the proofs.)

Fix a positive number a. Choose x; > \/&, and define x,, x3, x4, ..., by the

recursion formula
1 a
Xn+1 = = Xn + 1.
2 Xn

(a) Prove that {x.} decreases monotonically and that lim x, = V' a.
(b) Put &, = x,— Va, and show that
&2 &2

= e 2V a

so that, setting 8 =2V a,

&

En+1 <B(B)2 n=1,2,3,...).

(c) This is a good algorithm for computing square roots. since the recursion
formula is simple and the convergence is extremely rapid. For example, if « =3

and x, = 2, show that &,/8 < % and that therefore

£s <4 10716, 6 <4 10732,

Fix a > 1. Take x;, > \/;, and define

2
a+xn J_a—.\’”

= X, - l+.\‘...

Xn4+1 =

-l+x,._

(a) Prove that x; > x3 > xvs >+

(h) Prove that x, <xs <xg <:**.

(c) Prove that lim x, = Va.

(d) Compare the rapidity of convergence of this process with the one described
in Exercise 16.

Replace the recursion formula of Exercise 16 by

P— lx,. 4 2 xr

Xn+l ==

where p is a fixed positive integer, and describe the behavior of the resulting

sequences {x,}.
Associate to each sequence a = {«,}, in which «, is 0 or 2, the real number

a0 a"

Si3n

x(a) =

Prove that the set of all x(a) is precisely the Cantor set described in Sec. 2.44.
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Suppose {p.} is a Cauchy sequence in a metric space X, and some subsequence
{pn;} converges to a point p e X. Prove that the full sequence {p.} converges to p.
Prove the following analogue of Theorem 3.10(b): If {E,} is a sequence of closed
and bounded sets in a complete metric space X, if E, > E,.,, and if

lim diam E, =0,

n—+a0

then () P E. consists of exactly one point.

Suppose X is a complete metric space, and {G.} is a sequence of dense open
subsets of X. Prove Baire’s theorem, namely, that (| £G, is not empty. (In fact,
it is dense in X.) Hint: Find a shrinking sequence of neighborhoods E, such
that E, < G,, and apply Exercise 21.

. Suppose {pa.} and {g,} are Cauchy sequences in a metric space X. Show that the

sequence {d(pa,q.)} converges. Hint: For any m, n,

d(Pn, qn) < d(Dn, Pm) + d(DPm,qm) + d(Gm , q);
it follows that
|d(p'ls Qn) - d(pm, qm)l

is small if m and n are large.
Let X be a metric space.
(a) Call two Cauchy sequences {p.}, {g.} In X equivalent if

lim d(p.,q.) =0.

n—0o0

Prove that this is an equivalence relation.
(b) Let X* be the set of all equivalence classes so obtained. If Pe X*, Q€ X*,
{p.} € P, {q.} € Q, define

A(P, Q) = lim d(pa, g);

A -» o0

by Exercise 23, this limit exists. Show that the number A(P, Q) is unchanged if
{pa} and {q.} are replaced by equivalent sequences, and hence that A is a distance
function in X'*.

(c) Prove that the resulting metric space X* is complete.

(d) For each p € X, there is a Cauchy sequence all of whose terms are p; let P,
be the element of X * which contains this sequence. Prove that

A(PP) PQ) =d(p’ q)

for all p, g € X. In other words, the mapping ¢ defined by ¢(p) = P, is an isometry
(i.e., a distance-preserving mapping) of X into X*.

(e) Prove that ¢(X) is dense in X*, and that ¢(X) = X* if X is complete. By (d),
we may identify X and ¢(X) and thus regard X as embedded in the complete
metric space X*. We call X* the completion of X.

Let X be the metric space whose points are the rational numbers, with the metric
d(x,y) =|x— y|. What is the completion of this space? (Compare Exercise 24.)
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CONTINUITY

The function concept and some of the related terminology were introduced in
Definitions 2.1 and 2.2. Although we shall (in later chapters) be mainly interested
in real and complex functions (i.e., in functions whose values are real or complex
numbers) we shall also discuss vector-valued functions (i.e., functions with
values in R*) and functions with values in an arbitrary metric space. The theo-
rems we shall discuss in this general setting would not become any easier if we
restricted ourselves to real functions, for instance, and it actually simplifies and
clarifies the picture to discard unnecessary hypotheses and to state and prove
theorems in an appropriately general context.

The domains of definition of our functions will also be metric spaces,
suitably specialized in various instances.

LIMITS OF FUNCTIONS

4.1 Definition Let X and Y be metric spaces; suppose £ < X, f maps E into
Y, and p is a limit point of E. We write f(x) = g as x - p, or

(1) limf(x) =¢q

xX—*p
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if there is a point g € Y with the following property: For every ¢ > 0 there
exists a 0 > 0 such that

(2) dy(f(x), q) <¢

for all points x € E for which
(3) 0 < dy(x, p) <.

The symbols dy and d, refer to the distances in X and Y, respectively.

If X and/or Y are replaced by the real line, the complex plane, or by some
euclidean space R¥, the distances d, , dy are of course replaced by absolute values,
or by appropriate norms (see Sec. 2.16).

It should be noted that p e X, but that p need not be a point of E
in the above definition. Moreover, even if pe E, we may very well have

f(p) # lim_, , f(x).

We can recast this definition in terms of limits of sequences:

4.2 Theorem Let X, Y, E, f, and p be as in Definition 4.1. Then
4) limf(x) =¢q

xX—p

if and only if
%) lim f(p,) =¢

n—oC

for every sequence {p,} in E such that

(6) Pn # D im p, =p.
Proof Suppose (4) holds. Choose {p,} in E satisfying (6). Let ¢ >0
be given. Then there exists 6 >0 such that d,(f(x),q) <¢ if xe E
and 0 <dy(x,p) <d. Also, there exists N such that n» > N implies
0 <dy(p,,p) <6. Thus, for n> N, we have d,(f(p,),q) < ¢, which
shows that (5) holds.

Conversely, suppose (4) is false. Then there exists some ¢ > 0 such
that for every 6 > O there exists a point x € E (depending on 9), for which
dy(f(x),q) > € but 0 < dy(x, p) <d. Takingd,=1/n(n=1,2,3,...), we
thus find a sequence in E satisfying (6) for which (5) is false.

Corollary If f has a limit at p, this limit is unique.

This follows from Theorems 3.2(b) and 4.2.
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4.3 Definition Suppose we have two complex functions, f and g, both defined
on E. By f+ g we mean the function which assigns to each point x of E the
number f(x) + g(x). Similarly we define the difference f— g, the product fg,
and the quotient f/g of the two functions, with the understanding that the quo-
tient is defined only at those points x of E at which g(x) # 0. If f assigns to each
point x of E the same number ¢, then f is said to be a constant function, or
simply a constant, and we write f=c. If f and g are real functions, and if
f(x) > g(x) for every x € E, we shall sometimes write f > g, for brevity.
Similarly, if f and g map E into R*, we define f + gand f- g by

f+g)x) =1(x) +g(x), (- 8)(x)=1(x)-8gx);
and if 4 is a real number, (Af)(x) = Af(x).

4.4 Theorem Suppose E = X, a metric space, p is a limit point of E, f and g
are complex functions on E, and
lim f(x) = A, lim g(x) = B.

Then (a) lim (f+ g)(x) = A + B;
®) lim (fg)(x) = AB;

xX—>p

A
(¢) lim (j:)(x) =—,if B#0.
x-p \d B
Proof In view of Theorem 4.2, these assertions follow immediately from
the analogous properties of sequences (Theorem 3.3).

Remark If f and g map E into R* then (a) remains true, and (b) becomes
(6) lim (f-g)(x) =A-B.

xX—p

(Compare Theorem 3.4.)

CONTINUOUS FUNCTIONS

4.5 Definition Suppose X and Y are metric spaces, E < X, p € E, and f maps
E into Y. Then fis said to be continuous at p if for every ¢ > O there exists a
6 > 0 such that

dy(f(x),f(P) <&

for all points x € E for which dy(x, p) <.
If fis continuous at every point of E, then f'is said to be continuous on E.
It should be noted that f has to be defined at the point p in order to be
continuous at p. (Compare this with the remark following Definition 4.1.)



86 PRINCIPLES OF MATHEMATICAL ANALYSIS

If p is an isolated point of E, then our definition implies that every function
f which has F as its domain of definition is continuous at p. For, no matter
which ¢ > 0 we choose, we can pick 6 > 0 so that the only point x € E for which
dy(x, p) < 6 is x = p; then

dy(f(x),f(p) =0 <e.

4.6 Theorem In the situation given in Definition 4.5, assume also that p is a
limit point of E. Then f is continuous at p if and only if lim__, , f(x) = f(p).

Proof This is clear if we compare Definitions 4.1 and 4.5.
We now turn to compositions of functions. A brief statement of the

following theorem is that a continuous function of a continuous function is
continuous.

4.7 Theorem Suppose X, Y, Z are metric spaces, E = X, f maps E into Y, g
maps the range of f, f(FE), into Z, and h is the mapping of E into Z defined by

h(x) =g(f(x))  (x€E).

If f is continuous at a point p € E and if g is continuous at the point f(p), then h is
continuous at p.

This function 4 is called the composition or the composite of fand g. The
notation

h =g of
is frequently used in this context.

Proof Let ¢ >0 be given. Since g is continuous at f(p), there exists
n > 0 such that

dz(9(»), 9(f(p))) < e if dy(y, f(p)) < nand y € f(E).

Since fis continuous at p, there exists 6 > 0 such that

dy(f(x), f(p)) <nifdy(x,p) < and xe E.
It follows that

dz(h(x), h(p)) = dz(g(f(x)), 9(f(p))) < &

if dy(x, p) <6 and x € E. Thus A is continuous at p.
4.8 Theorem A mapping f of a metric space X into a metric space Y is con-
tinuous on X if and only if f ~Y(V') is open in X for every open set V in Y.

(Inverse images are defined in Definition 2.2.) This is a very useful charac-
terization of continuity.
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Proof Suppose fis continuous on X and V is an open set in Y. We have
to show that every point of £ ~!(V) is an interior point of f~!(V). So,
suppose p € X and f(p) € V. Since V is open, there exists € > 0 such that
ye Vif dy(f(p), y) < ¢; and since f is continuous at p, there exists 6 > 0
such that dy(f(x), f(p)) < € if dy(x, p) < 6. Thus xef~!(V) as soon as
dy(x, p) < 9.

Conversely, suppose f ~'(V') is open in X for every open set V in Y.
Fix pe X and ¢ > 0, let V be the set of all y € Y such that dy(y, f(p)) < e.
Then V is open; hence f (V) is open; hence there exists § > 0 such that
xef~Y(V)as soon as dy(p, x) < 5. Butif xe f~'(V), then f(x) eV, so

that dy(f(x),f(p)) <.
This completes the proof.

Corollary A mapping f of a metric space X into a metric space Y is continuous if
and only if f ~'(C) is closed in X for every closed set C in Y.

This follows from the theorem, since a set is closed if and only if its com-

plement is open, and since f ~!(E€) = [f “1(E)]* for every E c Y.

We now turn to complex-valued and vector-valued functions, and to

functions defined on subsets of R.

4.9 Theorem Let fand g be complex continuous functions on a metric space X.
Then f + g, fg, and f[g are continuous on X.

4.10

(7

In the last case, we must of course assume that g(x) # 0, for all x € X.
Proof At isolated points of X there is nothing to prove. At limit points,

the statement follows from Theorems 4.4 and 4.6.

Theorem

(@) Let fy, ..., fi be real functions on a metric space X, and let f be the
mapping of X into R* defined by

f(x) =(/i(¥), ..., ilx))  (x € X);

then f is continuous if and only if each of the functions f,, ..., f; is continuous.
(b) If f and g are continuous mappings of X into R*, then f + g and f- g
are continuous on X.

The functions f;, ..., f; are called the components of f. Note that
f + g is a mapping into R¥, whereas f + g is a real function on X.




88 PRINCIPLES OF MATHEMATICAL ANALYSIS

Proof Part (a) follows from the inequalities
}

k
1) = 0] < 1) = 1) = 3. 179 = £)17)

forj=1, ..., k. Part (b) follows from (@) and Theorem 4.9.

4.11 Examples If x,, ..., x, are the coordinates of the point x € R, the
functions ¢; defined by
(8) ¢i(X) = x; (x € RY)

are continuous on R*, since the inequality

|pi(x) — d:(V| < [x -]

shows that we may take 6 = ¢ in Definition 4.5. The functions ¢; are sometimes
called the coordinate functions.

Repeated application of Theorem 4.9 then shows that every monomial
%) X x5k

where n,, ..., n, are nonnegative integers, is continuous on R*. The same is
true of constant multiples of (9), since constants are evidently continuous. It
follows that every polynomial P, given by

(10) P(x) =ZXc, ..., X7 ... X3 (x € RY),

is continuous on R*. Here the coefficients Cp,---n, aT€ COMplex numbers, ny, ...,

are nonnegative integers, and the sum in (10) has finitely many terms.
Furthermore, every rational function in x, ..., Xx,, that is, every quotient

of two polynomials of the form (10), is continuous on R* wherever the denomi-
nator is different from zero.

From the triangle inequality one sees easily that
(11) |Ix| = [yl| < [x—y| (x,yeRY.

Hence the mapping x — | x| is a continuous real function on R,
If now f is a continuous mapping from a metric space X into R* and if ¢

is defined on X by setting ¢(p) = [f(p)], it follows, by Theorem 4.7, that ¢ is a
continuous real function on X.

4.12 Remark We defined the notion of continuity for functions defined on a
subset E of a metric space X. However, the complement of E in X plays no
role whatever in this definition (note that the situation was somewhat different
for limits of functions). Accordingly, we lose nothing of interest by discarding
the complement of the domain of /. This means that we may just as well talk
only about continuous mappings of one metric space into another, rather than
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of mappings of subsets. This simplifies statements and proofs of some theorems.
We have already made use of this principle in Theorems 4.8 to 4.10, and will
continue to do so in the following section on compactness.

CONTINUITY AND COMPACTNESS

4.13 Definition A mapping f of a set E into R is said to be bounded if there is
a real number M such that |f(x)| < M for all x e E.

4.14 Theorem Suppose f is a continuous mapping of a compact metric space
X into a metric space Y. Then f(X) is compact.

Proof Let{V,} be an open cover of f(X). Since fis continuous, Theorem
4.8 shows that each of the sets f~'(V,) is open. Since X is compact,

there are finitely many indices, say «,, ..., «,, such that
(12) Xcf 'V u - uf (Ve

Since f(f ~'(E)) c E for every E c Y, (12) implies that
(13) f(X)c Ve, U UV, .

This completes the proof.

Note: We have used the relation f(f~'(E)) < E. valid for Ec Y. If
E c X, then f~'(f(E)) o E; equality need not hold in either case.
We shall now deduce some consequences of Theorem 4.14.

4.15 Theorem If fis a continuous mapping of a compact metric space X into
R*, then f(X) is closed and bounded. Thus, f is bounded.

This follows from Theorem 2.41. The result is particularly important
when f'is real:

4.16 Theorem Suppose f is a continuous real function on a compact metric
space X, and

(14) M = sup f(p), m= inf f(p).

PeX peX

Then there exist points p, q € X such that f(p) = M and f(q) = m.

The notation in (14) means that M is the least upper bound of the set of
all numbers f(p), where p ranges over X, and that m is the greatest lower bound
of this set of numbers.
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The conclusion may also be stated as follows: There exist points p and g
in X such that f(q) < f(x) < f(p) for all x € X; that is, f attains its maximum
(at p) and its minimum (at g).

Proof By Theorem 4.15, f(X) is a closed and bounded set of real num-
bers; hence f(X) contains

M =sup f(X) and m = inf f(X),
by Theorem 2.28.

4.17 Theorem Suppose f is a continuous 1-1 mapping of a compact metric
space X onto a metric space Y. Then the inverse mapping ' defined on Y by

STU@)=x (xeX)

is a continuous mapping of Y onto X.

Proof Applying Theorem 4.8 to /™! in place of f, we see that it suffices
to prove that f(V') is an open set in Y for every open set V in X. Fix such
a set V.

The complement V¢ of V is closed in X, hence compact (Theorem
2.35); hence f(V ) is a compact subset of Y (Theorem 4.14) and so is
closed in Y (Theorem 2.34). Since fis one-to-one and onto, f(}') is the
complement of (V). Hence f(V) is open.

4.18 Definition Let fbe a mapping of a metric space X into a metric space Y.
We say that f is uniformly continuous on X if for every ¢ > 0 there exists 06 > 0
such that

(15) dy(f(p). /(@) < ¢

for all p and g in X for which dy(p, q) < 6.

Let us consider the differences between the concepts of continuity and of
uniform continuity. First, uniform continuity is a property of a function on a
set, whereas continuity can be defined at a single point. To ask whether a given
function is uniformly continuous at a certain point is meaningless. Second, if
f is continuous on X, then it is possible to find, for each ¢ > 0 and for each
point p of X, anumber 6 > 0 having the property specified in Definition 4.5. This
0 depends on ¢ and on p. If fis, however, uniformly continuous on X, then it is
possible, for each ¢ > 0, to find one number 6 > 0 which will do for all points
p of X.

Evidently, every uniformly continuous function is continuous. That the
two concepts are equivalent on compact sets follows from the next theorem.
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4.19 Theorem Let f be a continuous mapping of a compact metric space X
into a metric space Y. Then [ is uniformly continuous on X.

Proof Let ¢ > 0 be given. Since f is continuous, we can associate to
each point p € X a positive number ¢(p) such that

(16) q€ X, dx(p,q) <@(p) implies d\(f(p), /(@) <5

Let J(p) be the set of all g e X for which

(17) dx(p, q) < 1¢(p).
Since p € J(p), the collection of all sets J(p) is an -open cover of X; and
since X i1s compact, there is a finite set of points p,, ..., p, in X, such that
(18) XcJ(p) o - uJ(p)
We put
(19) 0 =} min [@(py), ..., #(pn)]-

Then 6 > 0. (This is one point where the finiteness of the covering, in-
herent in the definition of compactness. i1s essential. The minimum of a
finite set of positive numbers is positive, whereas the inf of an infinite set
of positive numbers may very well be 0.)

Now let ¢ and p be points of X, such that dy(p, g) < . By (18). there
is an integer m, | < m < n, such that p e J(p,,); hence

(20) dx([), pm) < %¢(pm),

and we also have

dX(qs pm) < d.\’(p’ q) + dX(p’ pm) < 6 + %¢(pm) < d)(pm)
Finally, (16) shows that therefore

dy(f(p). /(@) < dv(f(P),/(Pm)) + d([()./(P)) < &

This completes the proof.

An alternative proof is sketched in Exercise 10.
We now proceed to show that compactness is essential in the hypotheses
of Theorems 4.14, 4.15, 4.16, and 4.19.

4.20 Theorem Let E be a noncompact set in R'. Then

(a) there exists a continuous function on E which is not bounded,
(b) there exists a continuous and bounded function on E which has no

maximum.
If, in addition, E is bounded, then
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(21)

(22)

(23)

(¢c) there exists a continuous function on E which is not uniformly
continuous.

Proof Suppose first that £ is bounded, so that there exists a limit point
xo of E which is not a point of E. Consider

1

x_xO

f(x) = (x € E).

This is continuous on E (Theorem 4.9), but evidently unbounded. To see
that (21) is not uniformly continuous, let ¢ > 0 and o > 0 be arbitrary, and
choose a point x € E such that |x — xo| < &. Taking ¢ close enough to
X0, We can then make the difference |f(z) — f(x)| greater than ¢, although
|t — x| < &. Since this is true for every o > 0, fis not uniformly continu-
ous on E.

The function g given by

|

I + (x — xy)? (xe£)

g(x) =

is continuous on £, and is bounded, since 0 < g(x) < 1. It is clear that

sup g(x) =1,

xe E

whereas g(x) < 1 for all x e E. Thus g has no maximum on E.
Having proved the theorem for bounded sets E. let us now suppose
that £ is unbounded. Then f(x) = x establishes (a), whereas

2

I1(x)=l g (xe E)
establishes (b), since
sup h(x) =1
xeE

and h(x) <1 for all xe E.

Assertion (¢) would be false if boundedness were omitted from the
hypotheses. For, let £ be the set of all integers. Then every function
defined on E is uniformly continuous on E. To see this, we need merely
take 6 < 1 in Definition 4.18.

We conclude this section by showing that compactness is also essential in

Theorem 4.17.
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4.21 Example Let X be the half-open interval [0, 27) on the real line, and

let f be the mapping of X onto the circle Y consisting of all points whose distance
from the origin is 1, given by

(24) f(¢) = (cos ¢, sin t) 0 <t < 2n).

The continuity of the trigonometric functions cosine and sine, as well as their
periodicity properties, will be established in Chap. 8. These results show that
f is a continuous 1-1 mapping of X onto Y.

However, the inverse mapping (which exists, since f is one-to-one and
onto) fails to be continuous at the point (1, 0) = f(0). Of course, X is not com-
pact in this example. (It may be of interest to observe that f~! fails to be
continuous in spite of the fact that Y is compact!)

CONTINUITY AND CONNECTEDNESS

4.22 Theorem [f f is a continuous mapping of a metric space X into a metric
space Y, and if E is a connected subset of X, then f(E) is connected.

Proof Assume, on the contrary, that f(£) = A U B, where 4 and B are
nonempty separated subsets of Y. PutG =E n f~'(4), H = E n f~(B).

Then £ = G U H, and neither G nor H is empty.

Since A A (the closure of 4), we have G c f~!(A); the latter set is
closed, since fis continuous: hence G = f ~!(A4). It follows that f(G) < A.
Since f(H) = B and A n B is empty, we conclude that G n H is empty.

The same argument shows that G n H is empty. Thus G and H are
separated. This is impossible if E is connected.

4.23 Theorem Let f be a continuous real function on the interval [a, b). If

f(a) <f(b) and if ¢ is a number such that f(a) < ¢ < f(b), then there exists a
point x € (a, b) such that f(x) = c.

A similar result holds, of course, if f(a) > f(b). Roughly speaking, the
theorem says that a continuous real function assumes all intermediate values on
an interval.

Proof By Theorem 2.47, [a, b] is connected; hence Theorem 4.22 shows

that f([a, b]) is a connected subset of R!, and the assertion follows if we
appeal once more to Theorem 2.47.

4.24 Remark At first glance, it might seem that Theorem 4.23 has a converse.
That is, one might think that if for any two points x; < x, and for any number ¢

between f(x,) and f(x,) there is a point x in (x;, Xx,) such that f/(x) = ¢, then f
must be continuous.

That this is not so may be concluded from Example 4.27(d).
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DISCONTINUITIES

If x is a point in the domain of definition of the function f at which f is not
continuous, we say that f is discontinuous at x, or that f has a discontinuity at x.
If fis defined on an interval or on a segment, it is customary to divide discon-
tinuities into two types. Before giving this classification, we have to define the
right-hand and the left-hand limits of fat x, which we denote by f(x +) and f(x--),
respectively.

4.25 Definition Let /' be defined on (a, b). Consider any point x such that
a<x<b. We write

f(x+) =g

if f(¢,) » q as n — oo, for all sequences {¢,} in (x, b) such that 1, > x. To obtain
the definition of f(x—), for a < x < b, we restrict ourselves to sequences {t,} in
(a, x).

It is clear that any point x of (a, b), lim f(¢) exists if and only if

t1—7*x

f(x+) =f(x—) = lim f(1).

1—Xx

4.26 Definition Let f be defined on (a, b). If fis discontinuous at a point X,
and iIf f(x+) and f(x—) exist. then fis said to have a discontinuity of the first
kind, or a simple discontinuity, at x. Otherwise the discontinuity is said to be of
the second kind.

There are two ways in which a function can have a simple discontinuity:
either f(x+) # f(x—) [in which case the value f(x) is immaterial], or f(x +) =

S(x=) # [(x).

4.27 Examples
(a) Define

1 (x rational),
S(x) = {0 (x irrational).

Then f has a discontinuity of the second kind at every point x, since
neither f(x+) nor f(x—) exists.
(b) Define

_[x  (x rational),
S(x) = {0 (x irrational).
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Then fis continuous at x = 0 and has a discontinuity of the second
kind at every other point.

(c) Define
(x + 2 (—3<x<-2),
S(x)={—x—2 (—2<x<0),
X+ 2 O<x<]l.

Then f has a simple discontinuity at x =0 and is continuous at
every other point of (—3, 1).
(d) Define

1
, sin — (x #0),
f(x) = X

0 (x = 0).

Since neither f(0+) nor f(0—) exists, f/ has a discontinuity of the
second kind at x =0. We have not yet shown that sin x is a continuous
function. If we assume this result for the moment, Theorem 4.7 implies
that f is continuous at every point x # 0.

MONOTONIC FUNCTIONS

We shall now study those functions which never decrease (or never increase) on
a given segment.

4.28 Definition Let f be real on (a. b). Then f is said to be monotonically
increasing on (a, b) if a < x <y < b implies f(x) < f(y). If the last inequality
is reversed, we obtain the definition of a monotonically decreasing function. The
class of monotonic functions consists of both the increasing and the decreasing
functions.

4.29 Theorem Let f be monotonically increasing on (a, b). Then f(x+) and

S(x—

(25)

(26)

) exist at every point of x of (a, b). More precisely,

sup f(t) =f(x—) <f(x) < f(x+) = inf f(¢).

a<t<x x<t<b

Furthermore, if a < x <y < b, then

fx+) <fr-).

Analogous results evidently hold for monotonically decreasing functions.
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Proof By hypothesis, the set of numbers f(¢), where a < t < x, is bounded
above by the number f(x), and therefore has a least upper bound which
we shall denote by 4. Evidently A4 < f(x). We¢ have to show that

A=f(x-).
Let ¢ > 0 be given. It follows from the definition of A4 as a least
upper bound that there exists 4 > 0 such that a < x — é < x and

(27) A—e<f(x—90) < A.
Since fi1s monotonic, we have
(28) f(x=9)<f(t)< A4 (x —0<t<x).
Combining (27) and (28), we see that
|l f(t) — A| <e¢ (x — 6 <t<Xx).

Hence f(x—) = A.
The second half of (25) is proved in precisely the same way.
Next, if a < x <y < b, we see from (25) that

(29) f(x+) = inf f(¢) = inf f(¢).
x<t<b x<t<y
The last equality is obtained by applying (25) to (a, ) in place of (a, b).
Similarly,
(30) J(y—) = sup f(t) = sup f(z).

a<t<y x<t<y

Comparison of (29) and (30) gives (26).
Corollary Monotonic functions have no discontinuities of the second kind.

This corollary implies that every monotonic function is discontinuous at
a countable set of points at most. Instead of appealing to the general theorem
whose proof is sketched in Exercise 17, we give here a simple proof which is
applicable to monotonic functions.

4.30 Theorem Let f be monotonic on (a. b). Then the set of points of (a, b) at
which f is discontinuous is at most countable.

Proof Suppose. for the sake of definiteness, that f is increasing, and
let E be the set of points at which f is discontinuous.

With every point x of E we associate a rational number r(x) such
that

Sx=) <r(x) <flx+).
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Since x, <x, implies f(x,+) <f(x,—), we see that r(x,) # r(x,) if
Xy # X;3.
We have thus established a 1-1 correspondence between the set E and

a subset of the set of rational numbers. The latter. as we know, is count-
able.

4.31 Remark It should be noted that the discontinuities of a monotonic
function need not be isolated. In fact. given any countable subset E of (a, b).
which may even be dense. we can construct a function /. monotonic on (a. b),
discontinuous at every point of F. and at no other point of (a, b).

To show this, let the points of E be arranged in a sequence {x,},

n=1. 2 3,.... Let {c,] be a sequence of positive numbers such that Zc,
converges. Define
3D fx)=> e, (a < x <Db).

The summation is to be understood as follows: Sum over those indices n
for which x, < x. If there are no points x, to the left of x, the sum is empty;
following the usual convention, we define it to be zero. Since (31) converges
absolutely, the order in which the terms are arranged is immaterial.

We leave the veritication of the following properties of f/ to the reader:

(a) fis monotonically increasing on (a, b);
(b) fis discontinuous at every point of E; in fact.

f(xn+) _f(xn_) =Cy,-
(c¢) fis continuous at every other point of (a. b).

Moreover, it is not hard to see that f(x—) = f(x) at all points of (a, b). If
a function satisfies this condition, we say that f is continuous from the left. If
the summation in (31) were taken over all indices » for which x, < x. we would
have f(x+) = f(x) at every point of (a, b); that is. f would be continuous from
the right.

Functions of this sort can also be defined by another method; for an

example we refer to Theorem 6.16.

INFINITE LIMITS AND LIMITS AT INFINITY

To enable us to operate in the extended real number system, we shall now
enlarge the scope of Definition 4.1, by reformulating it in terms of neighborhoods.

For any real number x, we have already defined a neighborhood of x to
be any segment (x — 4, x + ).
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4.32 Definition For any real c, the set of real numbers x such that x > c is
called a neighborhood of + co and is written (c. + 00). Similarly, the set (— oo, ¢)
is a neighborhood of — 0.

4.33 Definition Let f be a real function defined on E. We say that
f(t)—> A as t- x,

where A4 and .x are in the extended real number system, if for every neighborhood
U of A there is a neighborhood V of x such that IV n E is not empty, and such
that f(t)e Uforallte bl N E, t # x.

A moment’s consideration will show that this coincides with Definition
4.1 when A and x are real.

The analogue of Theorem 4.4 is still true, and the proof offers nothing
new. We state it, for the sake of completeness.

4.34 Theorem Ler f and g be defined on E. Suppose

f(t)— A, g(t)—- B ast— Xx.
Then

(@) f(t)—> A" implies A" = A.
b) (f+9)t)—> A4+ B,

() (fg)(t)— 4B,

(d) (flg)(t) > AlB,

provided the right members of (b), (c), and (d) are defined.
Note that o0 — 00, 0 - oc, 0000, A/0 are not defined (see Definition 1.23).

EXERCISES

1. Suppose ['is a real function defined on R! which satisfies

Iim[f(x+ W) —f(x—-h]=0

h—-0

for every x € R'. Does this imply that fis continuous ?
2. If fis a continuous mapping of a metric space X into a metric space Y, prove that

f(E) < f(E)

for every set E < X. (E denotes the closure of E.) Show, by an example, that

f(E) can be a proper subset of f(E).

3. Let f'be a continuous real function on a metric space X. Let Z (f) (the zero set of f)
be the set of all p € X at which f(p) =0. Prove that Z(f) is closed.

4. Let fand g be continuous mappings of a metric space .X into a metric space Y,



10.

11.

12.

13.
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and let E be a dense subset of X. Prove that f(E) is dense in f(X). If g(p) =f(p)
for all p € E, prove that g(p) =f(p) for all pe X. (In other words, a continuous
mapping is determined by its values on a dense subset of its domain.)

. If fis a real continuous function defined on a closed set E < R!, prove that there

exist continuous real functions g on R' such that g(x) = f(x) for all x € E. (Such
functions g are called continuous extensions of f from E to R!.) Show that the
result becomes false if the word *““closed” is omitted. Extend the result to vector-
valued functions. Hint: Let the graph of g be a straight line on each of the seg-
ments which constitute the complement of E (compare Exercise 29, Chap. 2).
The result remains true if R' is replaced by any metric space, but the proof is not
so simple.
If fis defined on E, the graph of fis the set of points (x, f(x)), for x € E. In partic-
ular, if E is a set of real numbers, and f'is real-valued, the graph of fis-a subset of
the plane.

Suppose E is compact, and prove thart f is continuous on E if and only if
its graph is compact.
If E< X and if fis a function defined on X, the restriction of f to E is the function
g whose domain of definition is E, such that g(p) =f(p) for p € E. Define fand g
on R? by: f(0,0) =g(0,0) =0, f(x,y) =xy*/(x* + y*), g(x,y) = xp*/(x* + y°)
if (x, y) # (0, 0). Prove that f is bounded on R?; that g is unbounded in every
neighborhood of (0, 0), and that f is not continuous at (0, 0); nevertheless, the
restrictions of both fand g to every straight line in R? are continuous!

. Let f be a real uniformly continuous function on the bounded set E in R'. Prove

that f is bounded on E.

Show that the conclusion is false if boundedness of E is omitted from the
hypothesis.
Show that the requirement in the definition of uniform continuity can be rephrased
as follows, in terms of diameters of sets: To every € > 0 there exists a 6 > 0 such
that diam f(F) < € for all F < X with diam E < é.
Complete the details of the following alternative proof of Theorem 4.19: If fis not
uniformly continuous, then for some ¢ > 0 there are sequences {p.}, {g.} in X such
that dx(p., g.) = 0 but dv(f(p,), f(g.)) > €. Use Theorem 2.37 to obtain a contra-
diction.
Suppose f is a uniformly continuous mapping of a metric space X into a metric
space Y and prove that {f(x,)} is a Cauchy sequence in Y for every Cauchy se-
quence {x,} in X. Use this result to give an alternative proof of the theorem stated
in Exercise 13.
A uniformly continuous function of a uniformly continuous function is uniformly
continuous.

State this more precisely and prove it.
Let E be a dense subset of a metric space X, and let f be a uniformly continuous
real function defined on E. Prove that f has a continuous extension from E to X
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14.

18.

16.

17.

18.

19.

(see Exercise 5 for terminology). (Uniqueness follows from Exercise 4.) Hint: For
each pe X and each positive integer n, let V,(p) be the set of all g € E with
d(p,q) < 1/n. Use Exercise 9 to show that the intersection of the closures of the
sets £(V1i(p)), f(V2(p)), ..., consists of a single point, say g(p), of R!. Prove that
the function g so defined on X is the desired extension of f.

Could the range space R! be replaced by R*? By any compact metric space?
By any complete metric space? By any metric space?
Let I =[O0, 1] be the closed unit interval. Suppose fis a continuous mapping of 7
into I. Prove that f(x) = x for at least one x € I.
Call a mapping of X into Y open if f(}') is an open set in Y whenever ¥V is an open
set in X.

Prove that every continuous open mapping of R! into R! is monotonic.
Let [x] denote the largest integer contained in x, that is, [x] is the integer such
that x — 1 < [x]) < x; and let (x) = x — [x] denote the fractional part of x. What
discontinuities do the functions [x] and (x) have?
Let f be a real function defined on (a, b). Prove that the set of points at which f
has a simple discontinuity is at most countable. Hint: L.et E be the set on which
f(x—) <f(x+). With each point x of E, associate a triple (p, ¢, r) of rational
numbers such that
(@ f(x—) <p <f(x+),
(b) a<qg <t < ximplies f(t) <p,
() x <t <r<bimplies f(¢) > p.
The set of all such triples is countable. Show that each triple is associated with at
most one point of E. Deal similarly with the other possible types of simple dis-
continuities.
Every rational x can be written in the form x = m/n, where n > 0, and m and »n are
integers without any common divisors. When x = 0, we take n = 1. Consider the
function f defined on R! by

(x irrational),

0

f(x)=(1 ( m)
- x=‘—. L ]
n

n

Prove that f'is continuous at every irrational point, and that f has a simple discon-
tinuity at every rational point.
Suppose f is a real function with domain R'! which has the intermediate value
property: If f(a) < ¢ < f(b), then f(x) = ¢ for some x between a and b.

Suppose also, for every rational r, that the set of all x with f(x) = r is closed.

Prove that f is continuous.

Hint: If x, = xo but f(x,) > r > f(xo) for some r and all n, then f(t,) =r
for some ¢, between xo and x,; thus ¢, > xo. Find a contradiction. (N. J. Fine,
Amer. Math. Monthly, vol. 73, 1966, p. 782.)
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If E is a nonempty subset of a metric space X, define the distance from xe€ X to E
by
pe(x) = inf d(x, z).

zeE

(a) Prove that pg(x) =0 if and only if x € E.
(b) Prove that pg is a uniformly continuous function on X, by showing that

|pe(x) — pe(¥)| < d(x, y)

for all xe X, ye X.
Hint: pe(x) <d(x, z) <d(x, y)+ d(y, 2), so that

pe(x) < d(x, y) + pe(¥).
Suppose K and F are disjoint sets in a metric space X, K is compact, F is closed.
Prove that there exists 6 > 0 such that d(p,q) > 6 if pe K, ge F. Hint: pf is a

continuous positive function on K.
Show that the conclusion may fail for two disjoint closed sets if neither is

compact.
Let A and B be disjoint nonempty closed sets in a metric space X, and define
p4(P)
) = € X).
0=+ PN

Show that fis a continuous function on X whose range lies in [0, 1], that f(p) =0
precisely on 4 and f(p) = 1 precisely on B. This establishes a converse of Exercise
3: Every closed set A < X is Z(f) for some continuous real f on X. Setting

V=/,7110,%). W=/"{ 1),

show that V and W are open and disjoint, and that A < V', B< W. (Thus pairs of
disjoint closed sets in a metric space can be covered by pairs of disjoint open sets.
This property of metric spaces is called normality.)

A real-valued function f defined in (a, b) is said to be convex if

S(Ax + (0 =D))< N x)+ A —=A)f(y)

whenever a <x <b, a<y <b, 0 <A <1. Prove that every convex function is
continuous. Prove that every increasing convex function of a convex function is
convex. (For example, if f is convex, so is e”.)

If fis convex in (a, b) and if a <s <t < u < b, show that

f(t)—f(S)< S () —f(S)< f(u) —f(f).

I—s u—s u—1

Assume that fis a continuous real function defined in (a, 4) such that

(X2} < /PO
2 ] 2

for all x, y € (a, b). Prove that fis convex.
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25.

If A< R* and B < R*, define A + B to be the set of all sums x +y with x € A4,
y € B.
(a) If Kis compact and C is closed in R, prove that K + C is.closed.

Hint: Takez¢ K+ C, put F=z — C, the set of all z— y with ye C. Then
K and F are disjoint. Choose & as in Exercise 21. Show that the open ball with
center z and radius & does not intersect K + C.
(b) Let & be an irrational real number. Let C, be the set of all integers, let C, be
the set of all na with n € C,. Show that C, and C, are closed subsets of R' whose
sum C, + C, is not closed, by showing that C, + C, is a countable dense subset
of R*.
Suppose X, Y, Z are metric spaces, and Y is compact. Let f map X into Y, let
g be a continuous one-to-one mapping of Y into Z, and put A(x)=g(f(x)) for
x € X.

Prove that f is uniformly continuous if 4 is uniformly continuous.

Hint: g~' has compact domain g(Y), and f(x) = g~ '(h(x)).

Prove also that fis continuous if /4 is continuous.

Show (by modifying Example 4.21, or by finding a different example) that
the compactness of Y cannot be omitted from the hypotheses, even when X and
Z are compact.
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DIFFERENTIATION

In this chapter we shall (except in the final section) confine our attention to real
functions defined on intervals or segments. This is not just a matter of con-
venience, since genuine differences appear when we pass from real functions to
vector-valued ones. Differentiation of functions defined on R* will be discussed

in Chap. 9.

THE DERIVATIVE OF A REAL FUNCTION

5.1 Definition Let f be defined (and real-valued) on [a, b]. For any x € [a, b]
form the quotient

f(t?:i(x) (@a<t<b,t#x),

(1) o(t) =

and define

(2) S(x) = lim ¢(2),

1—x
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provided this limit exists in accordance with Definition 4.1.

We thus associate with the function f a function f’ whose domain
is the set of points x at which the limit (2) exists; f is called the derivative
of f.

If /' is defined at a point x, we say that f is differentiable at x. If f’ is
defined at every point of a set E < [a, b], we say that f is differentiable on E.

It is possible to consider right-hand and left-hand limits in (2); this leads
to the definition of right-hand and left-hand derivatives. In particular, at the
endpoints a and b, the derivative, if it exists, is a right-hand or left-hand deriva-
tive, respectively. We shall not, however, discuss one-sided derivatives in any
detalil.

If f is defined on a segment (a, b) and if a < x < b, then f'(x) is defined
by (1) and (2), as above. But f’(a) and f’(b) are not defined in this case.

5.2 Theorem Let f be defined on [a, b). If fis differentiable at a point x € [a, b],
then f is continuous at x.

Proof As ¢ — x, we have, by Theorem 4.4,

J() —f(x)
— X

t (t=x)=f'(x)-0=0.

f(t) = f(x) =

The converse of this theorem is not true. It is easy to construct continuous
functions which fail to be differentiable at isolated points. In Chap. 7 we shall
even become acquainted with a function which is continuous on the whole line
without being differentiable at any point!

5.3 Theorem Suppose f and g are defined on [a, b] and are differentiable at a
point x € [a, b]. Then f + g, fg, and [ [g are differentiable at x, and

(@ (f+9)(x) =f(x)+4gx);
B) (f9)'(x) =" (0)g9(x) + f(x)g'(x);

© (1 ) (x) = 9(x)f ’(x)z— 9'(x)f(x)
g g°(x)

In (¢), we assume of course that g(x) # 0.

Proof (a) is clear, by Theorem 4.4. Let h = fg. Then
h(t) — h(x) =f()[g(r) — g()] + g(x)[f (1) —f(x)].
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If we divide this by # — x and note that f(1) = f(x) as t - x (Theorem 5.2),
(b) follows. Next, let A = f/g. Then

i) —h() 1 ()~ fo)
M e

Letting + — x, and applying Theorems 4.4 and 5.2, we obtain (c).

g(t) — g(x)] .

I —Xx

5.4 Examples The derivative of any constant is clearly zero. If fis defined
by f(x) = x, then f'(x) = 1. Repeated application of (b) and (c) then shows that
x" is differentiable, and that its derivative is nx"~!, for any integer n (if n <0,
we have to restrict ourselves to x # 0). Thus every polynomial is differentiable,
and so is every rational function, except at the points where the denominator is
zero. .

The following theorem is known as the ‘“‘chain rule” for differentiation.
It deals with differentiation of composite functions and is probably the most
important theorem about derivatives. We shall meet more general versions of it
in Chap. 9.

5.5 Theorem Suppose f is continuous on [a, b)], f'(x) exists at some point
x € [a, b], g is defined on an interval I which contains the range of f, and g is

differentiable at the point f(x). If
h(t) =g(f(1)) (a<t<D),

then h is differentiable at x, and

(3) h'(x) = g'(f(x)) /" (x).

Proof Let y =f(x). By the definition of the derivative, we have
(4) J(@) —f(x) = =)' (x) + u(t)],
(5) g(s) — 9(y) = (s = Y)g'(y) + v(s)),

where te [a, b),sel,and u(t) »0ast - x, v(s) > 0ass—y. Lets=f(¢).
Using first (5) and then (4), we obtain

h(t) — h(x) = g(f(1)) — 9(f(x))
=[f(t) =f()] - [g'(y) + v(s)]
=@ —x) [S"(0) +u@)] [g'() + vs)),

or, iIf t # x,

6) M =) _ 150y + o) - [ (x) + uo)].

I —Xx

Letting ¢ — x, we see that s —» y, by the continuity of f, so that the right
side of (6) tends to g'(y)f'(x), which gives (3).
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5.6 Examples
(a) Let f be defined by

|
x sin — (x #0),

(7) S(x) = x
0 (x =0).

Taking for granted that the derivative of sin x is cos x (we shall
discuss the trigonometric functions in Chap. 8), we can apply Theorems
5.3 and 5.5 whenever x # 0, and obtain

(8) f'(x) = sIn ' l—cos ! (x #0).
x X x

At x = 0, these theorems do not apply any longer, since 1/x is not defined
there, and we appeal directly to the definition: for ¢t # 0,

S@)y—-70) . 1
= Ssin —.
t—-0 t

As t — 0, this does not tend to any limit, so that f'(0) does not exist.
(b) Let f be defined by

21
©) 100 = x“ sin " (x #0),
0 (x = 0),

As above, we obtain

(10) f'(x) = 2x sin l — CoS ! (x #0).
x x

At x = 0, we appeal to the definition, and obtain

f(1) = f(0) |
— - < .
g t sin - < |t (t #0);
letting ¢ — 0, we see that
(11) 1'(0)=0.

Thus f is differentiable at all points x, but f’ is not a continuous
function, since cos (1/x) in (10) does not tend to a limit as x — O.
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MEAN VALUE THEOREMS

5.7 Definition Let f be a real function defined on a metric space X. We say
that f'has a local maximum at a point p € X if there exists 6 > 0 such that f(g) <
f(p) for all ge X with d(p, q) < 9.

Local minima are defined likewise.
Our next theorem is the basis of many applications of differentiation.

5.8 Theorem Let f be defined on [a, b]; if f has a local maximum at a point
x € (a, b), and if f'(x) exists, then f'(x) = 0.

The analogous statement for local minima is of course also true.
Proof Choose 6 in accordance with Definition 5.7, so that

a<x—0<x<x+06<hb.

If x — 6 <t < x, then

fO-r@_

I —Xx

Letting r —» x, we see that f'(x) > 0.
If x <t <x+ 4, then

O =) _

I —Xx

which shows that f'(x) < 0. Hence f'(x) = 0.

’

5.9 Theorem If f and g are continuous real functions on [a,b] which are
differentiable in (a, b), then there is a point x € (a, b) at which

[/(®) — f(a)lg’(x) = [9(b) — g(a))]"(x).
Note that differentiability is not required at the endpoints.
Proof Put
h(t) = [f(b) — f(@))g(t) — [9(b) — g(@)]f(t) (a<t<)).
Then 4 is continuous on [a, b], h is differentiable in (a, b), and
(12) h(a) = f(b)g(a) — f(a)g(b) = h(b).

To prove the theorem, we have to show that 4’(x) = 0 for some x € (a, b).
If h is constant, this holds for every x € (a, b). If h(t) > h(a) for
some ¢ € (a, b), let x be a point on [a, b] at which A attains its maximum
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(Theorem 4.16). By (12), x € (a, b), and Theorem 5.8 shows that A'(x) = 0.
If h(t) < h(a) for some ¢ € (a, b), the same argument applies if we choose
for x a point on [a, b] where A attains its minimum.

This theorem is often called a generalized mean value theoren: ; the following
special case is usually referred to as “‘the’’ mean value theorem:

5.10 Theorem If fis a real continuous function on [a, b] which is differentiable
in (a, b), then there is a point x € (a, b) at which

J(®) = fla) = (b—a)f'(x).
Proof Take g(x) = x in Theorem 5.9.

5.11 Theorem Suppose f is differentiable in (a, b).

(@) Iff'(x) >0 for all x € (a, b), then f is monotonically increasing.
(b) Iff'(x) =0 for all x € (a, b), then f is constant.
(¢) If f'(x) <0 for all xe (a, b), then f is monotonically decreasing.

Proof All conclusions can be read off from the equation

J(x2) = f(xy) = (x; — x1) f'(x),

which is valid, for each pair of numbers x,, x, in (a, b), for some x between
x, and x, .

THE CONTINUITY OF DERIVATIVES

We have already seen [Example 5.6(b)] that a function f may have a derivative
f’ which exists at every point, but is discontinuous at some point. However, not
every function is a derivative. In particular, derivatives which exist at every
point of an interval have one important property in common with functions
which are continuous on an interval: Intermediate values are assumed (compare
Theorem 4.23). The precise statement follows.

5.12 Theorem Suppose f is a real differentiable function on [a, b] and suppose
Sf'(@) <A <f'(b). Then there is a point x € (a, b) such that f'(x) = A

A similar result holds of course if f'(a) > f'(b).

Proof Put g(t) =f(t) — At. Then g'(a) <0, so that g(¢,) < g(a) for some
t, € (a, b), and g'(b) > 0, so that g(z,) < g(b) for some ¢, € (a, b). Hence
g attains its minimum on [a, b] (Theorem 4.16) at some point x such that
a < x <b. By Theorem 5.8, g'(x) =0. Hence f'(x) = A
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Corollary If f is differentiable on [a, b), then f' cannot have any simple dis-
continuities on [a, b].

But /' may very well have discontinuities of the second kind.

L’HOSPITAL’S RULE

The following theorem is frequently useful in the evaluation of limits.

5.13 Theorem Suppose fand g are real and differentiable in (a, b), and g’'(x) #0
for all x € (a, b), where —o0 <a<b < +0o. Suppose

(13) f,Lx)—»Aasx—-»a.
g'(x)

If

(14) f(x) >0 and g(x) -0 as x — a,

or if

(15) g(x) - + 00 as x—a,

then

(16) @-—n‘iasx—»a.
g(x)

The analogous statement is of course also true if x — b, or if g(x) > — o0

in (15). Let us note that we now use the limit concept in the extended sense of
Definition 4.33.

Proof We first consider the case in which —oc < 4 < +00. Choose a
real number ¢ such that 4 < g, and then choose r such that 4 <r <gq.
By (13) there is a point ¢ € (a, b) such that a < x < ¢ implies

(17) fo) <r.
g'(x)
If a<x <y<c, then Theorem 5.9 shows that there is a point 7 € (x, y)
such that
— ‘(¢
(18) J(x) = f(y) =f’()<r.
g(x) —g(y) g'(1)
Suppose (14) holds. Letting x — a in (18), we see that
(19) &2$r<q (a<y<eo).

9(»)
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Next, suppose (15) holds. Keeping y fixed in (18), we can choose
a point ¢, € (a, y) such that g(x) > g(y) and g(x) >0 if a < x < ¢,. Multi-

plying (18) by [g(x) — g(3)]/g(x), we obtain
S(x) - gy f(»)

20) — < r—r—= 4 = (a<x<c).
( d =" g0 " g !
If we let x> « in (20), (15) shows that there is a point ¢, € (a, ¢;)
such that
(21) f—(——x)<q (a < x <cy).
g(x)

Summing up, (19) and (21) show that for any g, subject only to the
condition A < g, there is a point ¢, such that f(x)/g(x) <gifa<x <c,.

In the same manner, if —00 < 4 < + 00, and p is chosen so that
p < A, we can find a point ¢4 such that

J(x)

p < —

g(x)

and (16) follows from these two statements.

(22) (a <x<cy),

DERIVATIVES OF HIGHER ORDER

5.14 Definition If fhas a derivative f’ on an interval, and if /' is itself differen-
tiable, we denote the derivative of f’ by /" and call f” the second derivative of f.
Continuing in this manner, we obtain functions

f;f”f”,f(3)’ ¢ "f(n)’

each of which is the derivative of the preceding one. f™ is called the nth deriva-
tive, or the derivative of order n, of f.

In order for £ (x) to exist at a point x, £~ !’ (+) must exist in a neighbor-
hood of x (or in a one-sided neighborhood, if x is an endpoint of the interval
on which fis defined), and £~ !’ must be differentiable at x. Since "~ must
exist in a neighborhood of x, /"~ 2 must be differentiable in that neighborhood.

TAYLOR’S THEOREM

5.15 Theorem Suppose f is a real function on [a, b), n is a positive integer,
"=V s continuous on [a, b, f™(¢) exists for every t € (a, b). Let o, B be distinct
points of [a, b], and define

n— lf(k)(a)
(23) P(t)= )

k=0 k!

(t — ).
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Then there exists a point x between a and B such that

1)

n!

(24) J(B) =P(p) + (B —a)

For n = 1, this is just the mean value theorem. In general, the theorem
shows that f can be approximated by a polynomial of degrece n — 1, and that
(24) allows us to estimate the error, if we know bounds on |f/"(x)].

Proof Let M be the number defined by
(25) J(B)=PPB)+ M — a)
and put
(26) git)y=f()—P(t)— M(t — «) (@a<t<b).
We have to show that n!M = f™(x) for some x between o and B. By
(23) and (26),
(27) g (@) = f™(¢) - n'M (a <t <Db).

Hence the proof will be complete if we can show that g(x) = 0 for some

x between a and .
Since P ™ (a) = f*"a) for k =0, ..., n — 1. we have

(28) g)=g'(@) = =g""D@=0.

Our choice of M shows that g(ff) =0, so that g'(x;) =0 for some x;
between x and f3, by the mean value thcorem. Since g'(2) = 0, we conclude
similarly that g”"(x,) = 0 for some x, between « and x;. After n steps we
arrive at the conclusion that g™(x,) = O for some x, between « and x,_,,
that is. between x and f.

DIFFERENTIATION OF VECTOR-VALUED FUNCTIONS

5.16 Remarks Definition 5.1 applies without any change to complex functions
f defined on [a, b], and Theorems 5.2 and 5.3, as well as their proofs, remain
valid. If f; and f, are the real and imaginary parts of f, that is, if

(@) = f1(t) + if(2)

for a <t < b, where f,(¢) and f,(¢) are real, then we clearly have

(29) S'(x) = f1(x) + if3(x);
also, f1s differentiable at x if and only if both f; and f, are differentiable at x.
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Passing to vector-valued functions in general, i.e., to functions f which
map [a, b] into some R*, we may still apply Definition 5.1 to define f'(x). The
term ¢(¢) in (1) is now, for each ¢, a point in R*, and the limit in (2) is taken with
respect to the norm of R*. In other words, f'(x) is that point of R* (if there is
one) for which

(30) lim ([ = )

t—=x t—x

—f'(x)| =0,

and f’ is again a function with values in R*.
If f;, ..., f. are the components of f, as defined in Theorem 4.10, then

(31) f'= (/1 -, )

and f is differentiable at a point x if and only if each of the functions f;, ..., f;
is differentiable at x.

Theorem 5.2 is true in this context as well, and so is Theorem 5.3(a) and
(b), if fg is replaced by the inner product f - g (see Definition 4.3).

When we turn to the mean value theorem, however, and to one of its
consequences, namely, L’Hospital’s rule, the situation changes. The next two
examples will show that each of these results fails to be true for complex-valued
functions.

5.17 Example Define, for real x,
(32) f(x) = e = cos x + isin x.

(The last expression may be taken as the definition of the complex exponential
e'*; see Chap. 8 for a full discussion of these functions.) Then

(33) f@m)—f0)=1-1=0,
but
(34) f(x) = ie",

so that |f’(x)| =1 for all real x.
Thus Theorem 5.10 fails to hold in this case.

5.18 Example On the segment (0, 1), define f(x) = x and

(35) g(x) = x + x?e'’*.
Since |e'*| =1 for all real ¢, we see that
(36) A

x—0 g(X) -



Next,
(37)

so that
(38)
Hence
(39)
and so

(40)

2. . 2
gx)=1+ {Zx - —l} el
x

=N
l

2i’
2x ——|—12>
X

19'(x)| =

_ 1 X
l9'(x)] ~2—x

‘fu)
g'(x)
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By (36) and (40), L'Hospital's rule fails in this case. Note also that g’'(x) #0

on (0, 1), by (38).

However. there is a consequence of the mean value thecorem which, for
purposes of applications, i1s almost as useful as Theorem 5.10, and which re-
mains true for vector-valued functions: From Theorem 5.10 it follows that

(41)

|f(b) — fla)l <(b—a) sup |[f'(x)].

a<x<b

5.19 Theorem Suppose f is a continuous mapping of [a. b] into R* and f is

differentiable in (a, b). Then there exists x € (a, b) such that

Proof’

[1(h) — f@)| < (b — a)|f(x)].

Put z = f(b) — f(v), and define

() =1z-1(r)

(@a<t<b).

Then ¢ is a real-valued continuous function on [a, b] which is differentia-
ble in (a. b). The mean value theorem shows therefore that

o(bh) — @a) = (b —a)p’(x) = (b — a)z - f'(x)
for some x € (a. b). On the other hand,

oh) —pla)y =1z -f(b) —z-f(a) =2z = |z|°.

The Schwarz inequality now gives

|z|2 = —a)|z - f'(x)| <(b—ud)|z]

f'(x)].

Hence |z| < (b — a)|f'(x)|, which is the desired conclusion.

1V. P. Havin translated the second edition of this book into Russian and added this
proof to the original one.
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EXERCISES
1. Let f be defined for all real x, and suppose that
/) —f)] < (x—p)?

for all real x and y. Prove that f is constant.
2. Suppose f’(x) > 01in (a, b). Prove that f is strictly increasing in (@, b), and let g be
its inverse function. Prove that g is differentiable, and that

1
(f(x) =—— a<x<h).
g’ (f(x)) 700 ( y
3. Suppose g is a real function on R', with bounded derivative (say |g'| < M). Fix
¢ >0, and define f(x) = x + €g(x). Prove that fis one-to-one if ¢ is small enough.
(A set of admissible values of € can be determined which depends only on M.)

4. If

Cl C‘n -1 Cn _
C°+2 t + n +n+l_0’
where Co, ..., C, are real constants, prove that the equation

C0+ Cix+ 4+ Cooix" "+ Cox"=0

has at least one real root between 0 and 1.
5. Suppose f'is defined and differentiable for every x >0, and f'(x) = 0 as x — + 00.
Put g(x) =f(x + 1) — f(x). Prove that g(x) - 0as x - + 0.
6. Suppose
(a) fis continuous for x >0,
(b) f'(x) exists for x >0,

(c) f(0) =0,
(d) /' is monotonically increasing.
Put

o0 =19 >0
X

and prove that g is monotonically increasing.
7. Suppose f'(x), g’(x) exist, g'(x) #0, and f(x) =g(x) =0. Prove that
SO _ )
i-x g(t)  g'(x)
(This holds also for complex functions.)
8. Suppose f’ is continuous on [a, b] and € > 0. Prove that there exists & > 0 such
that

f(1) — (%)

I —x

—fi(0)|<e



9.

10.

11.

12.

13.

14.

1S.
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whenever 0 < |t — x| <d, a<x<b, a<t<b. (This could be expressed by
saying that fis uniformly differentiable on [a, b] if f’ is continuous on [a, b].) Does
this hold for vector-valued functions too?

Let / be a continuous real function on R!, of which it is known that f'(x) exists
for all x # 0 and that f'(x) — 3 as x — 0. Does it follow that /'(0) exists?
Suppose fand g are complex differentiable functions on (0, 1), f(x) — 0, g(x) — 0,

f'(x) > A, g'(x) > Bas x — 0, where 4 and B are complex numbers, B # 0. Prove
that

lim[—(—x) = ﬁ
x-»og(x) B
Compare with Example 5.18. Hint:
SO _[fx ) x X
gx) | x AJ g(x) A g(x)

Apply Theorem 5.13 to the real and imaginary parts of f(x)/x and g(x)/x.
Suppose f is defined in a neighborhood of x, and suppose f“(x) exists. Show that

I fOc+ h)+ f(x—h) — 2f(x)
im

h-0 h2

= f"(x).

Show by an example that the limit may exist even if f“(x) does not.
Hint: Use Theorem 5.13.
If f(x) =|x|?3, compute f'(x), f"(x) for all real x, and show that f*(0) does not
exist.
Suppose a and c¢ are real numbers, ¢ >0, and f is defined on [— 1, 1] by

x?sin (x =) (if x # 0),

f® =10 (if x = 0).

Prove the following statements:

(a) fis continuous if and only if a > 0.

(b) f7(0) exists if and only if a > 1.

(c¢) f"is bounded if and only if a> 1 + ¢.

(d) f’ is continuous if and only if a > 1 + c.

(e) f7(0) exists if and only if a > 2 + c.

(f) f” is bounded if and only if a > 2 + 2c.

(g) f” is continuous if and only if a > 2 + 2c.

Let / be a differentiable real function defined in (a, b). Prove that f is convex if
and only if f’ is monotonically increasing. Assume next that f”“(x) exists for
every x € (a, b), and prove that fis convex if and only if f“(x) >0 for all x € (a, b).
Suppose a € R!, fis a twice-differentiable real function on (a, ®©), and Mo, M,, M,
are the least upper bounds of |f(x)|, [f'(x)|, |f"(x)|, respectively, on (a, ).
Prove that

M <4M M, .



116 PRINCIPLES OF MATHEMATICAL ANALYSIS

Hint: If h > 0, Taylor’s theorem shows that

J0) = 55 Ux + 26) — £C0] = B (8)
for some £ € (x, x + 2h). Hence

M
If/(x)l < hM,; + 79°

To show that M? =4M, M, can actually happen, take a = — 1, define
2x2 — 1 (—1 <x<0),

S(x)={x2—1
x4+ 1

(0 < x < ),

and show that M, =1, M, =4, M, =4,
Does M <4M, M, hold for vector-valued functions too?
16. Suppose f is twice-differentiable on (0, o), /” is bounded on (0, ), and f(x) — 0
as x > «. Prove that f’(x) - 0 as x — oC.
Hint: Let a - o in Exercise 15.
17. Suppose fis a real, three times differentiable function .1 [—\l, 1], such that

f(—1H=0, fO)=0, [f()=1, [f(0)=0.

Prove that f3)(x) > 3 for some x € (—1, 1).
Note that equality holds for 3(x3 + x2).
Hint: Use Theorem 5.15, with « =0 and B = +1, to show that there exist

s€(0, 1) and r € (—1, 0) such that
f(3)(s) +f(3)(t) — 6

18. Suppose [ is a real furiction on [a, b], n is a positive integer, and f" ! exists for
every t € [a, b). Let «, B, and P be as in Taylor’s theorem (5.15). Define

f@0)—f(B

o =—=3

for t € [a, b), t # B, differentiate
f@)—f(B)=(@—PB)Q(r)

n— | times at t = «, and derive the following version of Taylor’s theorem:

_ Q" (o) o,
f(B) =P + — (B— )"

19. Suppose f is defined in (—1,1) and f’(0) exists. Suppose —1 < a, <, <1,
«, >0, and B, = 0 as n — <. Define the difference quotients

_ f(Bn) _f(an) .
Bn_ p

D,



20.

21.

22.

23.
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Prove the following statements:

(a) If @, <0 < B,, then lim D, = f'(0).

(b) If 0 <, < Baand {B./(B. — «a)} is bounded, then lim D, = f7(0).
(c) If f7 is continuous in (—1, 1), then lim D, = f7(0).

Give an example in which fis differentiable in (—1, 1) (but /' is not contin-
uous at 0) and in which «,, B, tend to 0 in such a way that lim D, exists but is differ-
ent from f7(0).

Formulate and prove an inequality which follows from Taylor’s theorem and
which remains valid for vector-valued functions.

Let E be a closed subset of R'. We saw in Exercise 22, Chap. 4, that there is a
real continuous function f on R! whose zero set is E. Is it possible, for each closed
set E, to find such an f which is differentiable on R!', or one which is n times
differentiable, or even one which has derivatives of all orders on R'?

Suppose fis a real function on (— ¢, o). Call x a fixed point of fif f(x) = x.
(a) If fis differentiable and f'(r) # 1 for every real ¢, prove that f has at most one
fixed point.

(b) Show that the function f defined by

f@)=t+(1+e)!

has no fixed point, although 0 < f(¢) < 1 for all real .

(c) However, if there is a constant 4 < 1 such that |f'(t)| < A for all real ¢, prove
that a fixed point x of f exists, and that x = lim x,, where x, is an arbitrary real
number and

xn+l :f(xn)

forn=1,2,3,....
(d) Show that the process described in (c) can be visualized by the zig-zag path

(X1, x2) = (X2, X2) = (x2, x3) > (x3, X3) > (x3, X4) > -~
The function f defined by

x3+1
3

fx) =

has three fixed points, say «, 3, ¥, where
—2<a< —1, 0<B<l, 1 <y <2,

For arbitrarily chosen x,, define {x,} by setting x,.: =/f(x,).
(a) If x, < «, prove that x, - — o0 as n - o,

(b) If « < x, <y, prove that x, — 8 as n — 0.

(c) If y < x,, prove that x, - + 0 as n — 0.

Thus 8 can be located by this method, but « and y cannot.
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24. The process described in part (c) of Exercise 22 can of course also be applied to
functions that map (0, o) to (0, o).
Fix some a« > 1, and put

o+ X
1 +x°

(x)=;(x+;-), g(x) =

Both f and g have V « as their only fixed point in (0, ©). Try to explain, on the
basis of properties of f and g, why the convergence in Exercise 16, Chap. 3, is so
much more rapid than it is in Exercise 17. (Compare f/” and g’, draw the zig-zags
suggested in Exercise 22.)

Do the same when 0 < « < 1.

25. Suppose f is twice differentiable on [a, b), f(a) <O, f(b) >0, f'(x) >6 >0, and
0<f"(x) <M for all xe[a,b]. Let £ be the unique point in (a, b) at which
f(®=0.

Complete the details in the following outline of Newton’s method for com-
puting &.
(a) Choose x, € (&, b), and define {x,} by

_ S(xa)
S ()

Interpret this geometrically, in terms of a tangent to the graph of f.
(b) Prove that x,,, < x, and that

Xn+1 =xn

lim x, = §.

n—+ a0

(¢) Use Taylor’s theorem to show that

S (tn)
21 (x)

xn+1_§= (xn_g)z
for some t, € (&, x.).
(d) If A = M/26, deduce that

0<Xxn41— gﬁ%[A(xl — ‘f)]zn-

(Compare with Exercises 16 and 18, Chap. 3.)
(e) Show that Newton’s method amounts to finding a fixed point of the function
g defined by
S(x)

xX)=x———.
g(x) o)
How does g ’(x) behave for x near £?
(f) Put f(x) = x''3 on (— 0, ) and try Newton’s method. What happens?
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226. Suppose f is differentiable on [a, b], f(a) =0, and there is a real number A such

227.

228.

that |f'(x)| < A|f(x)| on [a, b]. Prove that f(x) =0 for all x € [a, b]. Hint: Fix
Xo € [a, b], let

Mo =sup|f(x)|, M, =sup|f'(x)]
for a < x <.xo. For any such x,

|/ (x)| < Mi(xo — a) < A(xo — a)Mo .
Hence Mo, =0 if A(xo —a)<1. That is, f=0 on [a, xo]. Proceed.
Let ¢ be a real function defined on a rectangle R in the plane, given by a < x < b,
a <y <PB. A solution of the initial-value problem

y=¢x,y), ya@a=c (x<c<p)

is, by definition, a differentiable function fon [a, b] suchthat f(a) = ¢, « < f(x) < B,
and

() =¢(x, f(x)) (a<x<b).
Prove that such a problem has at most one solution if there is a constant 4 such
that

|(x, ¥2) — $(x, y)| < A|y:— nil
whenever (., y;) € R and (x, y,) € R.

Hint: Apply Exercise 26 to the difference of two solutions. Note that this

uniqueness theorem does not hold for the initial-value problem

y =y, y0) =0,
which has two solutions: f(x) =0 and f(x) = x?/4. Find all other solutions.

Formulate and prove an analogous uniqueness theorem for systems of differential
equations of the form

Vi=dx, ¥, ..., ), yi@=¢, (G=1,...,k).
Note that this can be rewritten in the form

y =&d(x,y), y(a) =c

where y = (y1, ..., ¥«) ranges over a k-cell, ¢ is the mapping of a (k + 1)-cell
into the Euclidean k-space whose components are the functions ¢,, ..., ¢., and ¢
is the vector (c¢,, ..., ¢cx). Use Exercise 26, for vector-valued functions.

. Specialize Exercise 28 by considering the system

y.;=yJ+l (j=1’~"9k—1),
k
ye=f(x) — ;Z‘x g, (x)y;,

where f, g,, ..., g« are continuous real functions on [a, b], and derive a uniqueness
theorem for solutions of the equation
YO + gi(x)y* =D + o 4 ga(X)y” + gi(x)y = f(x),

subject to initial conditions

y(a)zcl’ y’(a)__-CZ’ s ey y(k_l)(a)__‘ck-
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THE RIEMANN-STIELTJES INTEGRAL

The present chapter is based on a definition of the Riemann integral which
depends very explicitly on the order structure of the real line. Accordingly,
we begin by discussing integration of real-valued functions on intervals. Ex-
tensions to complex- and vector-valued functions on intervals follow in later
sections. Integration over sets other than intervals is discussed in Chaps. 10

and 11.

DEFINITION AND EXISTENCE OF THE INTEGRAL

6.1 Definition Let [a, b] be a given interval. By a partition P of [a, b] we
mean a finite set of points x4, x,, ..., x,, where

a=Xg<X <" <Xpy <X, =0

We write
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Now suppose fis a bounded real function defined on [a, b]. Corresponding to
each partition P of [a, b] we put

M; = sup f(x) (xi-1 < x < xy),
m; = inf f(x) (Xi-1 < x < X)),

UP.f)= Y. M, Axi,

LP,f) =S m, Ax;,
i=1

and finally

(1) Ib fdx = inf UP.f)
b

2) [ rax = sup L(P.f),

where the inf and the sup are taken over all partitions P of [a, b]. The left
members of (1) and (2) are called the upper and lower Riemann integrals of f
over [a, b], respectively.

If the upper and lower integrals are equal, we say that f is Riemann-
integrable on [a, b], we write fe £ (that is, # denotes the set of Riemann-
integrable functions), and we denote the common value of (1) and (2) by

© [[rax
or by

b
4) fa f(x) dx.

This is the Riemann integral of f over [a, b]. Since f is bounded, there
exist two numbers, m and M, such that

m<f(x)<M (a< x<b).
Hence, for every P,

mb—a)<L(P,f) < UP,f) < Mb — a),

so that the numbers L(P, f) and U(P, f) form a bounded set. This shows that
the upper and lower integrals are defined for every bounded function f. The
question of their equality, and hence the question of the integrability of £, is a
more delicate one. Instead of investigating it separately for the Riemann integral,
we shall immediately consider a more general situation.
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6.2 Definition Let o« be a monotonically increasing function on [a, b] (since
o(a) and a(d) are finite, it follows that o is bounded on [a, b]). Corresponding to
each partition P of [a, b], we write

Ao; = ox;) — olx;_1).

It is clear that Aa; > 0. For any real function f which is bounded on [a, b]
we put

UP.f @)= Y. M A,

L(P,f,O()= Z m,»AO(,-,
i=1

where M;, m; have the same meaning as in Definition 6.1, and we define

b
(5) f fdo = inf UP, , %),

(6) f " fda = sup L(P, f, ).

the inf and sup again being taken over all partitions.

If the left members of (5) and (6) are equal, we denote their common
value by

(7) [ rd

or sometimes by

(8) fb £(x) dox).

This is the Riemann-Stieltjes integral (or simply the Stieltjes integral) of
f with respect to «, over [a, b).

If (7) exists, i.e., if (5) and (6) are equal, we say that fis integrable with
respect to «, in the Riemann sense, and write fe Z(o).

By taking a(x) = x, the Riemann integral is seen to be a special case of
the Riemann-Stieltjes integral. Let us mention explicitly, however, that in the
general case « need not even be continuous.

A few words should be said about the notation. We prefer (7) to (8), since
the letter x which appears in (8) adds nothing to the content of (7). It is im-
material which letter we use to represent the so-called ‘‘variable of integration.”
For instance, (8) is the same as

[ 1) doo).
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The integral depends on f, «, a and b, but not on the variable of integration,
which may as well be omitted.

The role played by the variable of integration is quite analogous to that
of the index of summation: The two symbols

n
Ci, ch
k=1

are the same, since each means ¢; + ¢, + ** + ¢,.

Of course, no harm is done by inserting the variable of integration, and
in many cases it is actually convenient to do so.

We shall now investigate the existence of the integral (7). Without saying
so every time, f will be assumed real and bounded, and « monotonically increas-

M=

1

ing on [a, b]; and, when there can be no misunderstanding, we shall write f in

place of L b.

6.3 Definition We say that the partition P* is a refinement of P if P* o P
(that is, if every point of P is a point of P*). Given two partitions, P, and P,,
we say that P* is their common refinement if P* = P, U P, .

6.4 Theorem If P* is a refinement of P, then

9) L(P,f, ) < L(P*, f, @)
and
(10) U(P*, f, o) < U(P, f, a).

Proof To prove (9), suppose first that P* contains just one point more
than P. Let this extra point be x*, and suppose x;_; < x* < x;, where
x;_; and x; are two consecutive points of P. Put

w, = inf f(x) (Xi-1 < x < x¥),
w, =Inf f(x) (x* <x<x)).
Clearly w, > m; and w, > m;, where, as before,

m; = inf f(x) (Xi-1 £ x < Xx)).
Hence

L(P* f.a) — L(P.f, @)
= wy[a(x*) — a(x;- )] + wala(x;) — a(x*)] — m;[a(x;) — oa(x;-1)]
= (w; — m)[a(x*) — a(x;-1)] + (W — mi)a(x;) — a(x*)] = 0.

If P* contains k points more than P, we repeat this reasoning k
times, and arrive at (9). The proof of (10) is analogous.
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b =b
6.5 Theorem f f dasj fda.

Proof Let P* be the common refinement of two partitions P, and P, .
By Theorem 6.4,

L(P,,f, x) < L(P* f.0) < UP*, f, ) < U(P,, f, a).
Hence
(11) L(Py, f, ) < UP,,f, a).
If P, is fixed and the sup is taken over all P,, (11) gives

(12) f fdou < U(P,,f, ).
The theorem follows by taking the inf over all P, in (12).

6.6 Theorem fe %(a) on [a,b] if and only if for every € >0 there exists a
partition P such that

(13) UP,f,a) — L(P, f, o) <e.
Proof For every P we have
L(P,f,a) < jfdasjfdas U(P, f, a).
Thus (13) implies

O_<_ffda—ffda<s.

Hence, if (13) can be satisfied for every € > 0, we have

f fdo = f fda,

that is, f € Z(a).
Conversely, suppose fe #(a), and let ¢ > 0 be given. Then there
exist partitions P, and P, such that

£
=)

(14) U(P, , f, &) —ffda <3

(15) [fdu—LPr o0 <3
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We choose P to be the common refinement of P, and P,. Then Theorem
6.4, together with (14) and (15), shows that

§<L(Pl,f,oz)+asL(P,f,a)+s,

so that (13) holds for this partition P.

UP, f, o) < U(Pz,f,a)<ffda+

Theorem 6.6 furnishes a convenient criterion for integrability. Before we
apply it, we state some closely related facts.

6.7 Theorem
(@) If (13) holds for some P and some ¢, then (13) holds (with the same €)

for every refinement of P.
(b) If (13) holds for P ={xq, ..., x,} and if s;, t; are arbitrary points in
[Xi-1, x:], then

.gl |f(s:) —f ()| Aw; < e.
(c) If fe R(x) and the hypotheses of (b) hold, then

3 f(e) B - [ f da

<eé.

Proof Theorem 6.4 implies (a). Under the assumptions made in (b),
both 1(s;) and f(¢,) lie in [m;, M}, so that | f(s;) — f(t;))| < M; — m;. Thus

3. 1£(s0) = f0)| s < UP, 1, @) = L(P. £, 0,

which proves (b). The obvious inequalities

LP,f, o) < Zf(t,-) Aa; < U(P, f,a)
and
L(P,f,0) < [ fda < U(P, f, a)
prove (c).

6.8 Theorem If fis continuous on [a, b] then f e A(x) on [a, b].
Proof Let e > 0 be given. Choose n > 0 so that
[(b) — a(a)]n <.

Since f is uniformly continuous on [a, b] (Theorem 4.19), there exists a
6 > 0 such that

(16) /() —f(®)| <n
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if xe [a, b], 1€ [a, b], and |x —t| <.
If P is any partition of [a, ] such that Ax; < ¢ for all /, then (16)
implies that
(17) M, —m;<n i—-1,...,n

and therefore

UP,f,o) — L(P, f.a) = 3: (M; — m;) Ax;
i=1

<1y A, =nla(b) — a(a)] <.
i=1
By Theorem 6.6, f € Z(2).

6.9 Theorem If f is monotonic on [a, b], and if a is continuous on [a, b), then
fe R(a). (We still assume, of course, that o is monotonic.)

Proof Let ¢ > 0 be given. For any positive integer n, choose a partition
such that

LG G PR
n

Ao

This is possible since a is continuous (Theorem 4.23).
We suppose that fis monotonically increasing (the proof i1s analogous
in the other case). Then

M; = f(x;), m; = f(x;-1) (i=1...,n),
so that

b _ n
UP,f,3) = 1P £y = S22 - (7e) = fix, )

n i

_ OV =) ey — pay) < 6

if n is taken large enough. By Theorem 6.6, f e Z(v).

6.10 Theorem Suppose f is bounded on (a, b), f has only finitely many points
of discontinuity on [a, b], and a is continuous at every point at which [ is discon-
tinuous. Then fe€ A ().

Proof Lete > 0 be given. Put M =sup | f(x)|, let E be the set of points
at which fis discontinuous. Since E is finite and « i1s continuous at every
point of E, we can cover E by finitely many disjoint intervals [u;, v;]
[a, b] such that the sum of the corresponding differences o(r;) — x(w,) is
less than €. Furthermore, we can place these intervals in such a way that
every point of E n (a, b) lies in the interior of some [u;, v)].
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Remove the segments (u;, v;) from [a, b]. The remaining set K is
compact. Hence f is uniformly continuous on K, and there exists 6 >0
such that |f(s) —f(t)| <eifse K, teK, |s —1t| <.

Now form a partition P ={xq, X4, ..., X,} of [a, b], as follows:
Each u; occurs in P. Each r; occurs in P. No point of any segment (u;, v;)
occurs in P. If x;_, is not one of the u;, then Ax; < 9.

Note that M, — m;, < 2M for every i, and that M; — m; < € unless
x;-y 1s one of the u;. Hence, as in the proof of Theorem 6.8,

UP,f, ) — L(P, f, &) < [2(b) — x(a)]e + 2 M.

Since ¢ is arbitrary, Theorem 6.6 shows that fe #£(x).
Note: If fand « have a common point of discontinuity, then f need not

be in #(x). Exercise 3 shows this.

6.11 Theorem Suppose fe #(a) on [a,b], m< f< M, ¢ is continuous on
[m, M], and h(x) = ¢(f(x)) on [a, b]. Then h e A(x) on [a, b].

(13)

(19)

Proof Choose € > 0. Since ¢ is uniformly continuous on [m, M], there
exists >0 such that d <¢ and |¢(s) — ¢(1)| <¢ if |s—1]| <6 and
s, te[m, M].

Since f€ Z(x), there is a partition P = {x¢, X, ...,. x,} of [a, b] such
that

U(P, f, x) — L(P, f, x) < 0*.

Let M. m; have the same meaning as in Definition 6.1, and let M}, m}

be the analogous numbers for 4. Divide the numbers 1, ..., n into two
classes: ie AiIf M; —m; <9d,ie Bif M; —m; > 6.

For i € A, our choice of § shows that M* — mf < e.

For ie B, M¥ — mf < 2K, where K=sup|¢(t)|, m<t< M. By

(18), we have

6> Aa; <) (M; —m;) Ax; < &?

ieB ieB
so that Y ;g Aa; < 4. It follows that

UP, h,x)— L(P,h,x) = Y (M} —m¥) Aa; -+ Y (M} — m}) Ao

ieAd ieB

< g[a(b) — a(a)] + 2K0 < g[u(b) — a(a) + 2K].

Since ¢ was arbitrary, Theorem 6.6 implies that /1 € Z(2).
Remark: This theorem suggests the question: Just what functions are

Riemann-integrable? The answer is given by Theorem 11.33(5).
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PROPERTIES OF THE INTEGRAL

6.12 Theorem
(@ Iff, € A() and f, € R(a) on [a, b], then

fl +f2 e'@(a),

cf € A(o) for every constant c, and

[h+syan=[rides [ rao

rcfda - cfbfda.
(b) If fi(x) < f2(x) on [a, b], then
fbfl do < fbfz dat.

() If fe R(x) on [a, b) and if a <c <b, then fe A(x) on [a, c] and on
[c, b], and

f: fdo + f: fdo = f" fda.
(d) Iffe R() on [a, b] and if |f(x)| < M on [a, b], then
f: £ do
(e) Iffe R(ay) and fe R(x,), then f € R, + a;) and

f:fd(al + o) = Lbfdal + f:fdaz ;

< M[a(b) — a(a)].

if fe€ A(x) and c is a positive constant, then f e %(cx) and
b b
f fd(ca) = cf fdo.

Proof Iff=/f, + f, and P is any partition of [a, b], we have
(20) L(P, /i, ) + L(P,f,0) < L(P, f, &)
< UP,f,0) < UP, f,0) + U(P, />, o).

If /i € Z(x) and f, € %(x), let € >0 be given. There are partitions P;
(j =1, 2) such that

UP;, [, ) — L(P;, f;, ) <&,



(21)

6.13
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These inequalities persist if P, and P, are replaced by their common
refinement P. Then (20) implies

UP,f,a) — L(P, [, a) < 2,

which proves that fe Z(«).
With this same P we have

UP,f;,a) < [ f;da+ ¢ (j=1,2);
hence (20) implies
[fdx< UP, f,a) < [ f da + [ 5 do + 2e.

Since ¢ was arbitrary, we conclude that

[fdoa< [ f, da+ [f, da

If we replace f; and f, in (21) by —f; and —f,, the inequality is
reversed, and the equality is proved.

The proofs of the other assertions of Theorem 6.12 are so similar
that we omit the details. In part (c) the point is that (by passing to refine-
ments) we may restrict ourselves to partitions which contain the point c,
in approximating | f da.

Theorem If fe #A(a) and g € A(a) on [a, b), then
(@) Jfg € A();

b b
b) |f| € #(a) and fafda sfa |f] do.

Proof If we take ¢(7) = t2, Theorem 6.11 shows that 2 € () if f € ().
The identity

4fg=(+9)*—-(f—-9)°

completes the proof of (a).
If we take ¢(¢) = ||, Theorem 6.11 shows similarly that | f|.e %(x).
Choose ¢ = +1, so that
c¢|fdou>0.
Then

| [fdoe| =c[fdu= [cfda< [|f] da,

since ¢f < |f].

6.14 Definition The unit step function I is defined by

0 (x <0),

1=\ (x > 0).
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6.15 Theorem If a<s <b, f is bounded on [a, b, f is continuous at s, and
a(x) = I(x — s), then

f: Fdo = f(s)

Proof Consider partitions P ={x,, x;. x,, X3}, where x,=a, and
xl =S<Y2 <X3 =b. Then

UP,f,a)=M,, L(P,f,x)=m,.
Since f is continuous at s, we see that M, and »i1, converge to f(s) as

xz - S.

6.16 Theorem Suppose ¢, >0 for 1, 2,3, ..., Xc, converges, {s,} is a sequence
of distinct points in (a, b), and

(22) a(x) =) ¢, I(x —s,).
n=1
Let f be continuous on [a, b]. Then

(23) [ rdu=5 c.fis),

=1

Proof The comparison test shows that the series (22) converges for
every x. Its sum a(x) is evidently monotonic, and a(a) =0, a(b) = Xc, .
(This 1s the type of function that occurred in Remark 4.31.)

Let ¢ > 0 be given, and choose N so that

o
Y ¢, <e.

Put

N oc
al(x) = glcn I(x - Sn)’ az(X) = Z Cn I(X - Sn)'

N+1

By Theorems 6.12 and 6.15,
b N
(24) |, oy =3 caf 5.
Since a,(b) — a,(a) < e,
< Mg,

25) [[ rao,
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where M = sup|f(x)|: Since a =, + a,, it follows from (24) and (25)
that

b N
(26) j fdu =Y c,f(s)| < Me.

If we let N - o0, we obtain (23).

6.17 Theorem Assume « increases monotonically and «' € R on [a, b). Let f
be a bounded real function on [a, b].
Then fe A(a) if and only if fa' € R. In that case

27) J;b fdoa = Lb f(x)a'(x) dx.

Proof Let ¢ >0 be given and apply Theorem 6.6 to a': There is a par-
tition P = {x,, ..., x,} of [a, b] such that

(28) U(P, o) — L(P, ') < e.
The mean value theorem furnishes points ¢t; € [x;_, x;] such that
Aa; = o'(t;) Ax;

fori=1,...,n Ifs, e[x;_y,x;], then
(29) 3 10 = (1) B, <,
by (28) and Theorem 6.7(b). Put M = sup|f(x)|. Since
3. 7(5) Ay = ¥ fs)o (1) Ax,
it follows from (29) that
(30) 3 £(s) B = 3. £(s)al(s) Bxi| < M.

In particular,

™M=

f(s)) Aa; < U(P, fo') + M,

"

i=1
for all choices of s; € [x;_;, x;], so that
UP,f,a) < UP, fa') + Me.
The same argument leads from (30) to

UL, fa') < UP, f, o) + Me.
Thus
3D | U(P, f, ) — U(P, fu')| < Me.
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Now note that (28) remains true if P is replaced by any refinement.
Hence (31) also remains true. We conclude that

b b
j fdo —f f(x)'(x) dx| < Me.
But ¢ is arbitrary. Hence
b b
(32) [ rde=] foe(x)dx,

for any bounded f. The equality of the lower integrals follows from (30)
in exactly the same way. The theorem foilows.

6.18 Remark The two preceding theorems illustrate the generality and
flexibility which are inherent in the Stieltjes process of integration. If a is a pure
step function [this is the name often given to functions of the form (22)), the
integral reduces to a finite or infinite series. If o has an integrable derivative,
the integral reduces to an ordinary Riemann integral. This makes it possible
in many cases to study series and integrals simultaneously, rather than separately.

To illustrate this point, consider a physical example. The moment of
inertia of a straight wire of unit length, about an axis through an endpoint, at
right angles to the wire, is

(33) folxz dm

where m(x) is the mass contained in the interval [0, x]. If the wire is regarded
as having a continuous density p, that is, if m'(x) = p(x), then (33) turns into

(34) folxz p(x) dx.

On the other hand, if the wire is composed of masses m; concentrated at
points x;, (33) becomes

(35) S xFm,.

Thus (33) contains (34) and (35) as special cases, but it contains much
more; for instance, the case in which m is continuous but not everywhere
differentiable.

6.19 Theoreni (change of variable) Suppose ¢ is a strictly increasing continuous
function that maps an interval [A, B] onto [a, b]). Suppose o is monotonically
increasing on [a, b] and fe A(x) on [a, b). Define B and g on [A, B] by

(36) B =a(e(y)),  9(») =Sf(0(»)).
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Then g € RA(B) and

(37

(38)

(39)

f: gdf = f: fda.

Proof To each partition P = {x,, ..., x,} of [a, b] corresponds a partition
O ={yo,...,yn Of [4, B], so that x; = ¢(y;). All partitions of [4, B)
are obtained in this way. Since the values taken by f on [x;_,, x;] are
exactly the same as those taken by g on [y;_,, »:], we see that

UQ,9,0) = U, f,a), L(Q,9,B)=L(P,f a).

Since f'e #(a), P can be chosen so that both U(P, f, a) and L(P, f, o)
are close to j' fda. Hence (38), combined with Theorem 6.6, shows that
g € Z(B) and that (37) holds. This completes the proof.

Let us note the following special case:

Take a(x) = x. Then f = ¢. Assume ¢’ € £ on [A4, B). If Theorem
6.17 is applied to the left side of (37), we obtain

| 1o ax = [ 100)0'0) .

INTEGRATION AND DIFFERENTIATION

We still confine ourselves to real functions in this section. We shall show that
integration and differentiation are, in a certain sense, inverse operations.

6.20 Theorem Letfe R on [a,b). Fora < x < b, put

F(x) = f 1) dt.

Then F is continuous on [a, b), furthermore, if f is continuous at a point xu of
[a, b), then F is differentiable at x,, and

F'(x0) = f(xo).

Proof Since fe#, f is bounded. Suppose |f(¢)| < M for a<t<b.
Ifa< x<y<b, then

|F(») — F(x)| = < M(y — x),

[r@ar

by Theorem 6.12(c) and (d). Given ¢ > 0, we see that
IF(y) —F(X)! <,
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provided that |y — x| <¢/M. This proves continuity (and, in fact,
uniform continuity) of F.
Now suppose f is continuous at x,. Given ¢ > 0, choose 6 > 0 such

that
|f(1) = f(xo)| <&
if |t — xo| <0, and a <t < b. Hence, if
Xog—0<S§<Xy<t<x9+0 and a<s<t<hb,
we have, by Theorem 6.12(d),

F(t) — F(s)
I —3S

It follows that F'(xy) = f(x,).

— f(xo)

1 t
— | L) ~f(x0)] du| < e.

6.21 The fundamental theorem of calculus If f € R# on [a, b] and if there is
a differentiable function F on [a, b] such that F' = f, then

f " fx) dx = F(b) — F(a).

Proof Let ¢ > 0 be given. Choose a partition P = {x,, ..., x,} of [a, b]
so that U(P,f) — L(P,f) <e. The mean value theorem furnishes points
t; € [x;—y, x;] such that

F(x;) — F(x;_,) = f(t;) Ax;
fori=1,...,n. Thus
3. ft) Ax, = Fb) - Fla).

It now follows from Theorem 6.7(c) that

<E&.

b
F(b) — F(a) — f f(x) dx

Since this holds for every ¢ > 0, the proof is complete.

6.22 Theorem (integration by parts) Suppose F and G are differentiable func-
tionson [a,b), FF =feR,and G' =ge R. Then

f:F(x)g(x) dx = F(b)G(b) - F(@)G(a) — [ (G (x) dx.

Proof Put H(x) = F(x)G(x) and apply Theorem 6.21 to H and its deriv-
ative. Note that H' € 2, by Theorem 6.13.
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INTEGRATION OF VECTOR-VALUED FUNCTIONS

6.23 Definition Letf,, ..., f, bereal functions on [a, b], and letf = (f{, ..., /i)
be the corresponding mapping of [a, b] into R*. If a increases monotonically
on [a, b], to say that f € #(x) means that f; € (o) forj=1, ..., k. If this is the

case, we define
[(tda = (f:f, ds,..... [ 1, doz).

In other words, (f du is the point in R* whose jth coordinate is |f; da.

It is clear that parts (a), (¢), and (e) of Theorem 6.12 are valid for these
vector-valued integrals; we simply apply the earlier results to each coordinate.
The same is true of Theorems 6.17, 6.20, and 6.21. To illustrate, we state the
analogue of Theorem 6.21.

6.24 Theorem Iffand ¥ mup [a. b)into R, iff € R on [a, b], and if F' = {, then
b
[ f(1) dt = F(b) — F(a).

The analogue of Theorem 6.13(b) offers some new features, however, at
least in its proof.

6.25 Theorem If f maps [a, b] into R* and if f € R(x) for some monotonically
increasing function o on [a, b), then |f| € #(a), and

b b

(40) ffdcx sf |f]| da.
Proof Iff,, ..., f, are the components of f, then

(41) 1] =T+ + 56

By Theorem 6.11, each of the functions f? belongs to #(«); hence so does
their sum. Since x? is a continuous function of x, Theorem 4.17 shows
that the square-root function is continuous on [0, M], for every real M.
If we apply Theorem 6.11 once more, (41) shows that |f| € #(a).

To prove (40), puty = (y, ..., i), where y; = [f; do. Then we have
y = |f da, and

ly[?=Yyi=Yy, ffj do =f(Znyj) dot.
By the Schwarz inequality,
(42) LY < |yl If())  (a<t<b);
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hence Theorem 6.12(b) implies

(43) yI2< Iy] [ If] de.

If y =0, (40) is trivial. If y # 0, division of (43) by |y| gives (40).

RECTIFIABLE CURVES

We conclude this chapter with a topic of geometric interest which provides an
application of some of the preceding theory. The case kK = 2 (i.e., the case of
plane curves) is of considerable importance in the study of analytic functions
of a complex variable.

6.26 Definition A continuous mapping y of an interval [a, b] into R* is called
a curve in R*. To emphasize the parameter interval [a, b], we may also say that
y is a curve on [a, b].

If y is one-to-one, 7 is called an arc.
If y(a) = y(b), y is said to be a closed curve.

It should be noted that we deiine a curve to be a mapping, not a point set.
Of course, with each curve y in R* there is associated a subset of R*, namely
the range of y, but different curves may have the same range.

We associate to each partition P ={x,,..., x,} of [a, b] and to each
curve y on [a, b] the number

A, = 3. 19x) = vxi-)l.

The ith term in this sum is the distance (in R*) between the points y(x;_,) and
v(x;). Hence A(P, y) is the length of a polygonal path with vertices at y(x,),
(%), ..., y(x,), in this order. As our partition becomes finer and finer, this
polygon approaches the range of y more and more closely. This makes it seem
reasonable to define the length of y as

A(y) = sup A(P, v),

where the supremum is taken over all partitions of [a, b].

If A(y) < oo, we say that vy is rectifiable.

In certain cases, A(y) is given by a Riemann integral. We shall prove this
for continuously differentiable curves, i.e., for curves y whose derivative y’ is
continuous.
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6.27 Theorem If y’ is continuous on [a, b), then vy is rectifiable, and

o) = [ Iy o) a

Proof Ifa<x;_; <x,<b, then

" youals[" ol

Xi-1

| y(xd) — v(xizy)| =

Hence
b
AP, y) < [ 1Y) de

for every partition P of [a, b]. Consequently,

b ’
A < [ 7)) dr.
To prove the opposite inequality, let € > 0 be given. Since 7y’ is
uniformly continuous on [a, b], there exists 6 > 0 such that
|7'(s) — y'()| <e if |s —¢| <.

Let P={xy, ..., x,} be a partition of [a, b], with Ax; < ¢ for all i. If
Xi_1 < t<x;, it follows that

1Y ()< |y (x)] + e
Hence

J': |Y'(0)] dt <|y'(x))| Ax; + & Ax;

-7 O+ y @) -yl + e

Xi-1

[ ) -y ar

Xi-1

+ + & Ax;

< j ¥ () d

<[ 9(x) — wxi-1)| + 28 Ax;.

If we add these inequalities, we obtain

Lbly’(t)| dt < A(P, 7) + 2¢(b — a)

< A(y) + 2¢(b — a).
Since € was arbitrary,

(171 ar < AG).

This completes the proof.
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EXERCISES

1.

2,

3.

Suppose o« increases on [a, b], a < xo < b, a is continuous at xo, f(xo) =1, and
f(x) =0 if x # xo. Prove that f € Z(«) and that | fdx = 0.

b
Suppose f >0, f is continuous on [a, 4], and L f(x)dx =0. Prove that f(x) =0

for all x € [a, b]. (Compare this with Exercise 1.)

Define three functions B, B2, s as follows: B,(x) =0if x <0, B;(x)=1if x>0
for j=1, 2, 3; and B,(0) =0, B.(0) =1, B3(0) = 4. Let f be a bounded function on
[—1, 1].

(a) Prove that fe Z(B,) if and only if f(0+) = f(0) and that then

[ fap, =1

(b) State and prove a similar result for 3, .

(c) Prove that f e #(B5) if and only if f is continuous at 0.
(d) If fis continuous at 0 prove that

ffdﬁx =ffdﬂ2 =ffd63 = £(0).

. If f(x) = O for all irrational x, f(x) = 1 for all rational x, prove that f ¢ £ on[a, b]

for any a < b.

. Suppose f is a bounded real function on [a, b], and /2 € # on [a, b]. Does it

follow that fe€ #? Does the answer change if we assume that f3> € £?

. Let P be the Cantor set constructed in Sec. 2.44. Let f be a bounded real function

on [0, 1] which is continuous at every point outside P. Prove that f € &# on [0, 1].
Hint: P can be covered by finitely many segments whose total length can be made
as small as desired. Proceed as in Theorem 6.10.

Suppose f is a real function on (0, 1] and f€ 2 on [c, 1] for every ¢ > 0. Define

f Cfo) de=1tim [ 00 dx

c—+0 c

if this limit exists (and is finite).

(@) If fe X on [0, 1], show that this definition of the integral agrees with the old
one.

(b) Construct a function f such that the above limit exists, although it fails to exist
with | f| in place of f.

. Suppose f € R on [a, b] for every b > a where a is fixed. Define

0 ]
f ) dx =1lim [ f(x) dx
(] b=+o0 Jg
if this limit exists (and is finite). In that case, we say that the integral on the left

converges. If it also converges after f has been replaced by | f], it is said to con-
verge absolutely.
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Assume that f(x) > 0 and that f decreases monotonically on [1, ). Prove

that
f :o f(x) dx
converges if and only if
3 £

converges. (This is the so-called “integral test’’ for convergence of series.)

. Show that integration by parts can sometimes be applied to the ‘improper”’

integrals defined in Exercises 7 and 8. (State appropriate hypotheses, formulate a
theorem, and prove it.) For instance show that
* cos x *© sinx

dx —
o 1-x 7 )y 1x)?

dx.

Show that one of these integrals converges absolutely, but that the other does not.

Let p and g be positive real numbers such that
1 1
-4+ =-=1
P 4
Prove the following statements.
(@) If u>0and v >0, then
p q
uv < ual + z .
p q

Equality holds if and only if «? = v4.
(b) If fe R(x), g € A(x), f=0,g >0, and

b b
jf"da=l=fg"da,
then
b
jfgdagl.

(c) If fand g are complex functions in %(«), then

<([C1rvrael ([ 1oteas)

This is Holder’s inequality. When p=g=2 it is usually called the Schwarz
inequality. (Note that Theorem 1.35 is a very special case of this.)

(d) Show that Holder’s inequality is also true for the ‘‘improper’’ integrals de-
scribed in Exercises 7 and 8.

f : fg do
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11. Let « be a fixed increasing function on [a, b]. For u € #(«), define

b 1/2
lull, = {f |u|? da} .

Suppose f, g, h € A(«), and prove the triangle inequality
Wf—hll < lf—gllz+ llg — Ali2

as a consequence of the Schwarz inequality, as in the proof of Theorem 1.37.
12. With the notations of Exercise 11, suppose fe€ #(«) and ¢> 0. Prove that
there exists a continuous function g on [a, b] such that || f— gll. <e.
Hint: Let P={xo, ..., Xa} be a suitable partition of [a, b], define

X — 1t I — Xi-
Ax, f(xi-1) + Ax, f(x)

gt) =

if xi-; <t <x..
13. Define

f(x)= fﬁ 1sin (t?) dt.

(a) Prove that |f(x)| <1/x if x > 0.
Hint: Put t? = u and integrate by parts, to show that f(x) is equal to

cos (x2) cos [(x + 1)?] J“"* D2 cos u

2x 2(x + 1) du

x2 4u3’2 :

Replace cos # by —1.
(b) Prove that

2xf(x) = cos (x?) —cos [(x + 1)*] + r(x)

where |r(x)| <c/x and c is a constant.
(¢) Find the upper and lower limits of xf(x), as x = oo.

(d) Does f :sin (t2) dt converge?
14. Deal similarly with

flx) = f " sin () dr.

Show that

el f(x)] <2
and that
e*f(x) = cos (e*) — e~ cos (e**1) + r(x),

where |r(x)| < Ce~*, for some constant C.
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Suppose f is a real, continuously differentiable function on [a, 4], f(a) = f(b) =0,
and

j: f2x) dx = 1.

Prove that
fxf(x)f'(x) dx = —}
and that
L LGN dx - fxsz(x) dx > }.
For 1 < s < oo, define

C(S) - njl nl’.

(This is Riemann’s zeta function, of great importance in the study of the distri-
bution of prime numbers.) Prove that

® [x]

1 xs+ldx

(@) {s)=s

and that

®) Us)= — —sf"‘["]dx,

S_l xs+l

where [x] denotes the greatest integer < x.
Prove that the integral in (b) converges for all s > 0.

Hint: To prove (a), compute the difference between the integral over [1, N]
and the Nth partial sum of the series that defines {(s).

Suppose o« increases monotonically on [a, b], g is continuous, and g(x) = G’(x)
for a < x < b. Prove that

j ba(x)g(x) dx = G(b)ou(b) — G(a)x(a) — J bG do.

Hint: Take g real, without loss of generality. Given P = {xo, X1, ..., Xa},
choose ¢, € (x;-,, x:) so that g(¢;,) Ax;, = G(x;) — G(x;-;). Show that

3 a(x)g(t) Ax, = GO)u(b) — Gla)u(@) — ¥ Glxi-,) Ae.

Let v,, v2, 73 be curves in the complex plane, defined on [0, 27] by
YI(t) — elt, .yz(t) —_— eZH’ ,ya(t) —_— e2nlt sin (l/r).

Show that these three curves have the same range, that y, and y, are rectifiable,
that the length of y, is 27, that the length of ¥, is 47, and that v, is not rectifiable.
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19. Let y, be a curve in R*, defined on [a, b]; let ¢ be a continuous 1-1 mapping of
[c, d] onto [a, b], such that ¢(c) = a; and define y.(s) == v,(¢(s)). Prove that y, is
an arc, a closed curve, or a rectifiable curve if and only if the same is true of y,.
Prove that y, and y, have the same length.



v

SEQUENCES AND SERIES OF FUNCTIONS

In the present chapter we confine our attention to complex-valued functions
(including the real-valued ones, of course), although many of the theorems and
proofs which follow extend without difficulty to vector-valued functions, and
even to mappings into general metric spaces. We choose to stay within this
simple framework in order to focus attention on the most important aspects of
the problems that arise when liinit processes are interchanged.

DISCUSSION OF MAIN PROBLEM

7.1 Definition Suppose {f,}, n=1,2,3,..., is a sequence of functions
defined on a set E, and suppose that the sequence of numbers { f,(x)} converges
for every x € E. We can then define a function f by

() f(x)=limf(x) (x€E).

n— o



144 PRINCIPLES OF MATHEMATICAL ANALYSIS

Under these circumstances we say that {f,} converges on E and that f is
the limit, or the limit function, of { f,}. Sometimes we shall use a more descriptive
terminology and shall say that *{ f,} converges to f pointwise on E” if (1) holds.
Similarly, if Xf,(x) converges for every x € E, and if we define

@ f0)= L5 (xeE)

the function f is called the sum of the series Xf, .
The main problem which arises is to determine whether important

properties of functions are preserved under the limit operations (1) and (2).
For instance, if the functions f, are continuous, or differentiable, or integrable,
is the same true of the limit function? What are the relations between f, and f,
say, or between the integrals of f, and that of /7

To say that fis continuous at x means

lim £(7) = f(x).

t—=x

Hence, to ask whether the limit of a sequence of continuous functions is con-
tinuous is the same as to ask whether
3) lim lim £,(¢) = lim lim f,(¢),
t—#Xx n—*o0 n—+oo t—x
i.e., whether the order in which limit processes are carried out is immaterial.

On the left side of (3), we first let n — o0, then ¢ — x; on the right side, ¢t - x

first, then n - oo.

We shall now show by means of several examples that limit processes
cannot in general be interchanged without affecting the result. Afterward, we
shall prove that under certain conditions the order in which limit operations

are carried out is immaterial.
Our first example, and the simplest one, concerns a ‘““double sequence.”

72 Example Form=1,23,...,n=1,23,..., let

m
Sm,n = *
’ m++n
Then, for every fixed n,
lims, ,=1,
so that
4) lim lims,, ,=1.

R—*a0 M—>
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On the other hand, for every fixed m,

lim s, ,=0,

n— oo

so that

(5) lim lim s, = 0.

m-—*00 n—* oo

7.3 Example Let

2

£.(x) = (—]{-x—z)- (xreal:n=0,1,2,..)),
and consider
o0 o x2
(6) f(x) =n;0ﬁ:(x) =n;0 m

Since /,(0) = 0, we have f(0) = 0. For x # 0, the last series in (6) is a convergent
geometric series with sum 1 + x? (Theorem 3.26). Hence

7) =1, e  Gaor

so that a convergent series of continuous functions may have a discontinuous
sum.

7.4 Example Form=1,2,3,..., put

Sm(x) = lim (cos m'nx)?".

n—+ oo

When m!x is an integer, f,,(x) = 1. For all other values of x, f,(x) = 0. Now let

f(x) =lim f,(x).
For irrational x, f,,(x) =0 for every m; hence f(x) = 0. For rational x, say
x = p/q, where p and g are integers, we see that m!x is an integer if m > ¢, so

that f(x) = 1. Hence

(8) lim lim (cos m!nx)*" =

m—+a0 n—* o0

0 (x irrational),
1 (x rational).

We have thus obtained an everywhere discontinuous limit function, which
is not Riemann-integrable (Exercise 4, Chap. 6).
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7.5 Example Let

sin nx
N
f(x) =1lim f,(x) = 0.

n— oo

©®) Sox) =

and

(xreal,n=1,2,3,...),

Then f'(x) = 0, and
fix) = \/; COS X,

so that {f,} does not converge to f’. For instance,

fu0) =/n— + oo

as n — oo, whereas f'(0) = 0.

7.6 Example Let
(10) fi(x) = n*x(1 — x?) O<x<l,n=1,2,3,..).

For 0 < x <1, we have

lim f,(x) =0,
by Theorem 3.20(d). Since f,(0) = 0, we see that
(11) Iimf(x) =0 O<x<)).

n—oc

A simple calculation shows that

! 1
__ y2)\n — .
fox(l x“)" dx P

Thus, in spite of (11),

n2

2n 4+ 2

folf,,(x) dx = - + 00

as n — oo.
If, in (10), we replace n? by n, (11) still holds, but we now have

1 1
lim fof,,(x) dx = lim 2n'; ~=3

whereas

fol [ lim f,,(x)] dx = 0.

n— oo
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Thus the limit of the integral need not be equal to the integral of the limit,
even if both are finite.

After these examples, which show what can go wrong if limit processes
are interchanged carelessly, we now define a new mode of convergence, stronger
than pointwise convergence as defined in Definition 7.1, which will enable us to
arrive at positive results.

UNIFORM CONVERGENCE

7.7 Definition We say that a sequence of functions {f,},n=1,2,3,...,
converges uniformly on E to a function f if for every ¢ > O there is an integer N
such that n > N implies

(12) 1fa() —f(x)| <€

for all x € E.

It is clear that every uniformly convergent sequence is pointwise con-
vergent. Quite explicitly, the difference between the two concepts is this: If{f,}
converges pointwise on E, then there exists a function f such that, for every
¢ > 0, and for every x € E, there is an integer N, depending on ¢ and on Xx, such
that (12) holds if n > N; if{/f,} converges uniformly on £, it is possible, for each
e > 0, to find one integer N which will do for all x € E.

We say that the series Xf,(x) converges uniformly on E if the sequence
{s,} of partial sums defined by

3 Si) = )

converges uniformly on E.
The Cauchy criterion for uniform convergence is as follows.

7.8 Theorem The sequence of functions{/,}, defined on E, converges uniformly
on E if and only if for every € > 0 there exists an integer N such that m > N,
n> N, x € Eimplies

(13) | /() = fm(X) | < &.

Proof Suppose {f,} converges uniformly on E, and let / be the limit
function. Then there is an integer N such that n > N, x € F implies

700 =) <5,
so that

[/a() = fu) | < |fax) = F(X) | + [ (x) = fu() | <€

ifn>N,m>N,xecFE.



148 PRINCIPLES OF MATHEMATICAL ANALYSIS

Conversely, suppose the Cauchy condition holds. By Theorem 3.11,
the sequence { f,(x)} converges, for every x, to a limit which we may call
f(x). Thus the sequence{f,} converges on E, to f. We have to prove that
the convergence is uniform.

Let ¢ > 0 be given, and choose N such that (13) holds. Fix n, and
let m — oo in (13). Since f,,(x) = f(x) as m - o0, this gives

(14) 1/i(x) — f(x)| < ¢

for every n > N and every x € E, which completes the proof.
The following criterion is sometimes useful.

7.9 Theorem Suppose
lim f,(x) =f(x)  (x € E).

n— o

Put
M, = sup | fo(x) — () |.

xeE

Then f,, — f uniformly on E if and only if M, » 0 as n — o0.

Since this i1s an immediate consequence of Definition 7.7, we omit the
details of the proof.

For series, there is a very convenient test for uniform convergence, due to
Welerstrass.

7.10 Theorem Suppose{f,} is a sequence of functions defined on E, and suppose
1) <M, (xeEn=1,273..).

Then Xf, converges uniformly on E if ZM, converges.
Note that the converse is not asserted (and is, in fact, not true).

Proof If M, converges, then, for arbitrary ¢ > 0,

3./

S.i M;<e (x e E),

provided m and n are large enough. Uniform convergence now follows
from Theorem 7.8.
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UNIFORM CONVERGENCE AND CONTINUITY

7.11 Theorem Suppose f, — f uniformly on a set E in a metric space. Let x be
a limit point of E, and suppose that

(15) lti_{njj,(t) = A, n=1,2,3,...).
Then {A,} converges, and
(16) limf(t) =1lim A4,,.
In other words, the conc;u;on is t}:atOo
(17) }Lm lim fi(t) = lim Eim £(2).

Proof Let ¢ >0 be given. By the uniform convergence of {f,}, there
exists N such that n > N, m > N, t € E imply

(18) | /:(8) — [0} | <&
Letting ¢ — x in (18), we obtain
'An - Am' <E&

for n> N,m> N, so that {4,} is a Cauchy sequence and therefore
converges, say to A.

Next,
(19) /(@) —A| < |f() - LD + |fu(t) — 4, | + |4, — A4].
We first choose n such that
3
(20) {ORSAGTES
for all ¢ € E (this is possible by the uniform convergence), and such that
21) |A,,—A|s§-

Then, for this n, we choose a neighborhood V of x such that

(22) | fa(t) — 4, | <

if teVNE, t#x.
Substituting the inequalities (20) to (22) into (19), we see that

|f(t) — A| <¢,
provided r € V N E, t#x. This is equivalent to (16).

(S R
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7.12 Theorem If{f,} is a sequence of continuous functions on E, and if f, > f
uniformly on E, then f is continuous on E.

This very important result is an immediate corollary of Theorem 7.11.

The converse is not true; that is, a sequence of continuous functions may
converge to a continuous function, although the convergence is not uniform.
Example 7.6 is of this kind (to see this, apply Theorem 7.9). But there is a case
in which we can assert the converse.

7.13 Theorem Suppose K is compact, and

(@) {/,} is a sequence of continuous functions on K,
(b) {f,} converges pointwise to a continuous function f on K,
(c) f,(x)=>f,s:(x)forallxeK,n=1,2,3,....

Then f, = f uniformly on K.

Proof Put g,=/,—f Then g, is continuous, g, =0 pointwise, and
dn =9n+1- We have to prove that g, = 0 uniformly on K.

Let ¢ > 0 be given. Let K, be the set of all x e K with g,(x) = «.
Since g, is continuous, K, is closed (Theorem 4.8), hence compact (Theorem
2.35). Since g, > 9.+, We have K, o K,,,. Fix xe K. Since g,(x) =0,
we see that x ¢ K, if n is sufficiently large. Thus x ¢ ﬂ K, . In other words,
ﬂ K, is empty. Hence Ky is empty for some N (Theorem 2.36). It follows
that 0 <g,(x) < eforall x e K and foralln > N. This proves the theorem.

Let us note that compactness is really needed here. For instance, if

Jux) = nx + 1

then f,(x) = 0 monotonically in (0, 1), but the convergence is not uniform.

O<x<l;n=1,2,3,..))

7.14 Definition If X is a metric space, (X ) will denote the set of all complex-
valued, continuous, bounded functions with domain X.

[Note that boundedness is redundant if X is compact (Theorem 4.15).
Thus €(X) consists of all complex continuous functions on X if X is compact.]
We associate with each f e €(X) its supremum norm

Ifll = sup |f(x)|.

xekX
Since f is assumed to be bounded, |f]| < co. It is obvious that | f|| = 0 only if
f(x) =0 for every x € X, thatis, only if f=0. If h=f+ g, then
|h(x) | < |f) |+ 1gC) | < NIfIl+ lgl

for all x € X; hence

If+gll < IfI+ lgll.
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If we define the distance between f € €(X) and g € €(X) to be | f—4gl|,

it follows that Axioms 2.15 for a metric are satisfied.

We have thus made €(X) into a metric space.
Theorem 7.9 can be rephrased as follows:

A sequence {f,} converges to [ with respect to the metric of €(X) if and
only if f, — f uniformly on X.

Accordingly, closed subsets of €(X) are sometimes called wniformly

closed, the closure of a set of < €(X) is called its uniform closure, and so on.

7.15

Theorem The above metric makes €(X) into a complete metric space.

Proof Let{/,} be a Cauchy sequence in ¥(X). This means that to each
¢ >0 corresponds an N such that ||f, —f,| <e¢ if n> N and m > N.
It follows (by Theorem 7.8) that there is a function f with domain X to
which {f,} converges uniformly. By Theorem 7.12, f is continuous.
Moreover, f is bounded, since there is an n such that |[f(x) — f,(x)| <1
for all x € X, and f, is bounded.
Thus fe¥(X), and since f,—f uniformly on X, we have

I/ = fall > 0 as n — oo.

UNIFORM CONVERGENCE AND INTEGRATION

7.16

Theorem Let a be monotonically increasing on [a, b). Suppose f, € Z(®)

on(a, b], forn=1,2,3,...,and suppose f, — [ uniformly on [a, b). Then f € R(a)
on [a, b], and

(23)

N
J fda = lim

a n— oo

fbf,, do.

(The existence of the limit is part of the conclusion.)

(24)

(25)

Proof It suffices to prove this for real f,. Put
€, = SUp If;!(x) —f(X) |9

the supremum being taken over a < x < b. Then

j;,_sn_<_f5f;.+8”,
so that the upper and lower integrals of f/ (see Definition 6.2) satisfy

[(mende <[ fda [ rdas (f+ 6 d

Hence

0 _<_I fdo - [ fau < 26,[a(b) — a(@)].
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Since ¢, » 0 as n » o0 (Theorem 7.9), the upper and lower integrals of f
are equal.
Thus f € Z(«). Another application of (25) now yields
b b
[ fdu—[ 7, as

(26) < &,[a(b) — a(a)).

This implies (23).
Corollary If f, € #(2) on [a, b] and if

f6)= Y fil)  (@sxsb)

the series converging uniformly on [a, b], then

[ rax=5 [ fuan

In other words, the series may be integrated term by term.

UNIFORM CONVERGENCE AND DIFFERENTIATION

We have already seen, in Example 7.5, that uniform convergence oi { f,} implies
nothing about the sequence {f,}. Thus stronger hypotheses are required for the
assertion that f, - f’if f, - f.

7.17 Theorem Suppose {f,} is a sequence of functions, differentiable on [a, b]
and such that {f,(x,)} converges for some point x, on [a, b). If {f,} converges
uniformly on [a, b, then {f,} converges uniformly on [a, b), to a function f, and

(27) S (xX)=1limf/(x) (a<x<D).

n— oo

Proof Let ¢ >0 be given. Choose N such that n > N, m > N, implies

28) 173x0) = fulo) | <5
and

° (a<t<b).

(29) 110 10| < 55— (@<




(30)

(31

(32)

(33)
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If we apply the mean value theorem 5.19 to the function f, — £,,, (29)
shows that

x —tle ¢

< -
2(b—a) "2

'./;l(x) _fm(x) —./;t(t) +fm(t)| <

for any x and ¢ on [a, b), if n > N, m > N. The inequality

/(%) = fu(X) | < 1fa(x) = fulX) = fu(x0) + Sm(X0) | + [fu(X0) — fm(X0) |
implies, by (28) and (30), that
|fa(x) = f,(xX) | <& (a<x<b,n>N,m>=>N),
so that {f,} converges uniformly on [a, b]. Let

f(x) =lim f,(x) (a <x <D).

n— oo

Let us now fix a point x on [a, b] and define

b BO=1D SO

I — X [ — X

fora<t<b, t# x. Then

lim ¢, (1) =f/(x) (n=1,2,3,...).

t—x

The first inequality in (30) shows that

[9a() — () | < (n>N,m=N),

2(b — a)

so that {¢,} converges uniformly, for ¢ # x. Since {f,} converges to f, we
conclude from (31) that

lim ¢,(1) = ¢(1)

n— 0

uniformly fora <t < b, t # x.
If we now apply Theorem 7.11 to {¢,}, (32) and (33) show that

lim ¢(f) = lim £}/(x);

t—+x n—x

and this is (27), by the definition of ¢(¢).

Remark: If the continuity of the functions f; is assumed in addition to

the above hypotheses, then a much shorter proof of (27) can be based on
Theorem 7.16 and the fundamental theorem of calculus.
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7.18

Theorem There exists a real continuous function on the real line which is

nowhere differentiable.

(34)

(35)

(36)

(37)

(38)

(39)

Proof Define
p(x) = |x| (-1 <x<l)
and extend the definition of ¢(x) to all real x by requiring that
o(x +2) = o(x).
Then, for all s and ¢,

() — ()| < |s —t].
In particular, ¢ is continuous on R'. Define

£ = ¥, @)

Since 0 <¢ <1, Theorem 7.10 shows that the series (37) converges
uniformly on R!. By Theorem 7.12, f is continuous on R'.
Now fix a real number x and a positive integer m. Put

b=t 347"

where the sign is so chosen that no integer lies between 4"x and 4™(x + J,,).
This can be done, since 4™ |5,,| = 1. Define

_ 9@'(x + 0,)) — 9(4"x)
yn - 5 )
When n > m, then 4"5,, is an even integer, so thaty, = 0. When0 <n <m,

(36) implies that |y, | <4".
Since |y,,| = 4™, we conclude that
m 3 n
nZO (Z) T
m—1
> 3m _ Z 3n
n=0

J(x +6,) —f(X)
= 13" + 1),

Om
As m— o0, 4, — 0. It follows that f is not differentiable at x.

n

EQUICONTINUOUS FAMILIES OF FUNCTIONS

In Theorem 3.6 we saw that every bounded sequence of complex numbers
contains a convergent subsequence, and the question arises whether something
similar is true for sequences of functions. To make the question more precise,
we shall define two kinds of boundedness.
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7.19 Definition Let{/,} be a sequence of functions defined on a set E.

We say that{f,} is pointwise bounded on F if the sequence { f,(x)} is bounded
for every x € E, that is, if there exists a finite-valued function ¢ defined on F
such that

/() | < d(x) (xeE,n=1,2,3,..)).

We say that {f,} is uniformly bounded on E if there exists a number M
such that

()| <M  (xeE,n=1,273..)).

Now if {f,} is pointwise bounded on E and E|, is a countable subset of E,
it is always possible to find a subsequence {f, } such that{f, (x)} converges for
every x € E,. This can be done by the diagonal process which is used in the
proof of Theorem 7.23.

However, even if {f,} is a uniformly bounded sequence of continuous
functions on a compact set E, there need not exist a subsequence which con-
verges pointwise on E. In the following example, this would be quite trouble-
some to prove with the equipment which we have at hand so far, but the proof
is quite simple if we appeal to a theorem from Chap. 11.

7.20 Example Let

fix)=sinnx (0<x<2r,n=1,23,..)).

Suppose there exists a sequence {n,} such that {sin n,x} converges, for every
x € [0, 2n]. In that case we must have

lim (sin m,x — sinn, ., x) =0 (0 < x < 2n);

k—oc
hence

(40) lim (sin mx —sinn, 4, x)2 =0 (0 < x < 2n).

k= o0

By Lebesgue’s theorem concerning integration of boundedly convergent
sequences (Theorem 11.32), (40) implies

2n

41) lim f (sin nx — sinn,, (x)% dx = 0.
k=00 *0

But a simple calculation shows that

2n
f (sin n,x — sin n 4, x)* dx = 2m,
0

which contradicts (41).
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Another question is whether every convergent sequence contains a
uniformly convergent subsequence. Our next example will show that this
need not be so, even if the sequence is uniformly bounded on a compact set.
(Example 7.6 shows that a sequence of bounded functions may converge
without being uniformly bounded; but it is trivial to see that uniform conver-
gence of a sequence of bounded functions implies uniform boundedness.)

7.21 Example Let

x2

x2 4 (1 — nx)?
Then |f,(x)| <1, so that{f,} is uniformly bounded on [0, 1]. Also
lim f,(x) =0 0 <x<l),

n—aoo

Ja(x) = O<x<l,n=1,2,3,..)).

but

ﬁ,(l)=l (n=1,2,3,...),
n

so that no subsequence can converge uniformly on [0, 1].

The concept which is needed in this connection is that of equicontinuity;
it is given in the following definition.

7.22 Definition A family & of complex functions f defined on a set E in a
metric space X is said to be equicontinuous on E if for every ¢ > O there exists a
0 > 0 such that

) =S <e

whenever d(x, y) <d,x e E, y e E, and fe &#. Here d denotes the metric of X.

It is clear that every member of an equicontinuous family is uniformly
continuous.

The sequence of Example 7.21 is not equicontinuous.

Theorems 7.24 and 7.25 will show that there is a very close relation
between equicontinuity, on the one hand, and uniform convergence of sequences
of continuous functions, on the other. But first we describe a selection process
which has nothing to do with continuity.

7.23 Theorem If{f,} is a pointwise bounded scquence of complex functions on
a countable set E, then{f,} has a subsequence {f, } such that {f, (x)} converges for
every x € E.
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Proof Let{x},i=1,2 3,...,be the points of E, arranged in a sequence.
Since {f,(x,)} is bounded, there exists a subsequence, which we shall
denote by({/, .}, such that {f; ,(x,)} converges as k — oo.

Let us now consider sequences S,, S,, S;, ..., which we represent
by the array

Sit Sin N2 N3 Na
St fag S22 S23 f2a
S3: fan Sfiz f3z faa

OOOOOOOOOOOOOOOOOO

and which have the following properties:

(a) S, is a subsequence of S,_,, forn=2,3,4,....

(b) {fni(x,)} converges, as k — oo (the boundedness of {f,(x,)}
makes it possible to choose S, in this way);

(c) The order in which the functions appear is the same in each se-
quence; i.e., if one function precedes anotherin S, they are in the same
relation in every S,, until one or the other is deleted. Hence, when
going from one row in the above array to the next below, functions
may move to the left but never to the right.

We now go down the diagonal of the array; i.e., we consider the
sequence

S fin S22 Sis Saao

By (c), the sequence S (except possibly its first » — | terms) is a sub-
sequence of S,, for n=1,2,3,.... Hence (b) implies that {f, .(x)}
converges, as n — 0, for every x; € E.

7.24 Theorem If K is a compact metric space, if f, € €(K) for n=1,2,3, ...,
and if{f,} converges uniformly on K, then{f,} is equicontinuous on K.

Proof Let ¢ >0 be given. Since {f,} converges uniformly, there is an
integer N such that

(42) Ifa—Snl <& (n>N).

(See Definition 7.14.) Since continuous functions are uniformly con-
tinuous on compact sets, there is a 6 > 0 such that

(43) /i) =fi(»)] <e

if]1<i<N and d(x,y) <é.
If n > N and d(x, y) < 9, it follows that

() =i | < 1fux) =) | + [/n(x) =IO | + If6(0) = S0) | < 3e.

In conjunction with (43), this proves the theorem.
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7.25 Theorem If K is compact, if f, e 6(K) for n=1,2,3,..., and if {f,} is
pointwise bounded and equicontinuous on K, then

(44)

(45)

(46)

(@) {[f.} is uniformly bounded on K,
(b) {[f,} contains a uniformly convergent subsequence.

Proof

(a) Let ¢ >0 be given and choose 6 > 0, in accordance with Definition
7.22, so that

/() = i) | <&

for all n, provided that d(x, y) < é.

Since K is compact, there are finitely many points p,, ..., p, in K
such that to every x € K corresponds at least one p; with d(x, p;) <.
Since{f,} is pointwise bounded, there exist M; < oo such that |f,(p;)| < M,
for all n. If M=max(M,,..., M,), then [f(x)| <M + ¢ for every
x € K. This proves (a).

(b) Let E be a countable dense subset of K. (For the existence of such a
set E, see Exercise 25, Chap. 2.) Theorem 7.23 shows that {f,} has a
subsequence { .} such that{f, (x)} converges for every x € E.

Put f, =g;, to simplify the notation. We shall prove that {g;}

converges uniformly on K.

Let ¢ >0, and pick d >0 as in the beginning of this proof. Let
V(x, 8) be the set of all y € K with d(x, y) < . Since E is dense in K, and
K is compact, there are finitely many points x,, ..., x,, in E such that

Kc V(xlaé) vt U V(xmaa)'

Since {g,(x)} converges for every x € E, there is an integer N such
that

1g:i(x) —gi(xs)| <¢

whenever i > N,j > N,1 <s <m.
If x € K, (45) shows that x € V(x,, 0) for some s, so that

9:(x) —gilx)| <&

for everyi. If i> N and j > N, it follows from (46) that

1g:(x) — g;(x) | < 1g:(x) —gix)| +1g:x) —g;(x) | + |g;(x) —g;(x) |
< 3.

This completes the proof.
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THE STONE-WEIERSTRASS THEOREM

7.26 Theorem If f is a continuous complex function on [a, b], there exists a
sequence of polynomials P, such that

lim P,(x) = f(x)

uniformly on [a, b). If fis real, the P, may be taken real.

This i1s the form in which the theorem was originally discovered by
Weierstrass.

Proof We may assume, without loss of generality, that [a, b] = [0, 1].
We may also assume that f(0) = f(1) = 0. For if the theorem is proved
for this case, consider

g(x) =f(x) —=f(0) — x[f(1) =f(0)] (O=x<1).

Here g(0) = g(1) = 0, and if g can be obtained as the limit of a uniformly
convergent sequence of polynomials, it is clear that the same is true for f,
since f — g iIs a polynomial.

Furthermore, we define f(x) to be zero for x outside [0, 1]. Then f
is uniformly continuous on the whole line.

We put

(47) Q.(x) = c,(1 — x*)" (n=1,2,3,...),

where ¢, is chosen so that

(48) jl 0.(x)dx=1 (n=1,2,3,..).

We need some information about the order of magnitude of ¢,. Since

1

1 i
[ a-xtyde=2 (1—x2)"dx22j” (I — x?)" dx
1 0 0

/V'n
> 2fl (1 — nx?) dx
0

4

3./n

it follows from (48) that

(49) ¢, </n.
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The inequality (I — x2)" > 1 — nx? which we used above is easily
shown to be true by considering the function

(1 —x»)" =1+ nx?

which is zero at x = 0 and whose derivative is positive in (0, 1).
For any 6 > 0, (49) implies

(50) Ou(x) < /n(1=8%" (< Ix| <),
so that O, — 0 uniformly in 6 < |x| < 1.
Now set
(s1) P =[ sx+nomd  ©<x<1.

Our assumptions about f show, by a simple change of variable, that

1—x 1
P =] S+ 00 di=[ f0Q ) d,
and the last integral is clearly a polynomial in x. Thus {P,} is a sequence

of polynomials, which are real if fis real.
Given ¢ > 0, we choose § > 0 such that |y — x| < é implies

f0) =0 <3

Let M =sup |f(x)|. Using (48), (50), and the fact that Q,(x) >0, we
see that for 0 < x <1,

) = ()= ‘f UG+ )= (1240 dr‘

<[ G+ -S040 dr

<M o) de+= j Q.(1)dt +2M [ Q,(1) i

_ £
< 4,’\/!\/;1 (1 -8+ 3
<é€

for all large enough n, which proves the theorem.

It is instructive to sketch the graphs of Q, for a few values of »; also,
note that we needed uniform continuity of f to deduce uniform convergence

of {P,}.
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In the proof of Theorem 7.32 we shall not need the full strength of
Theorem 7.26, but only the following special case, which we state as a corollary.

7.27 Corollary For every interval [— a, a] there is a sequence of real poly-
nomials P, such that P (0) = O and such that
lim P,(x) = |x|

n— oo

uniformly on [ — a, al.

Proof By Theorem 7.26, there exists a sequence {P}} of real polynomials
which converges to |x| uniformly on [— a, a]. In particular, PJ(0) -0
as n — 20. The polynomials

P(x)=P;(x)—P;(0) (n=1,23,..)
have desired properties.

We shall now isolate those properties of the polynomials which make
the Weierstrass theorem possible.

7.28 Definition A family &/ of complex functions defined on a set F is said
to be an algehraif 1) f+ge . (1) fg e . and (ii1) cf e o forall fe &/, g € &
and for all complex constants ¢, that is, if o/ is closed under addition, multi-
plication, and scalar multiplication. We shall also have to consider algebras of
real functions; in this case, (iii) is of course only required to hold for all real c.

If o/ has the property that /'€ o whenever f, e o (n=1,2,3,...) and
f, = f uniformly on E, then &7 is said to be uniformly closed.

Let # be the set of all functions which are limits of uniformly convergent
sequences of members of /. Then A is called the uniform closure of /. (See
Definition 7.14.)

For example, the set of all polynomials is an algebra, and the Weierstrass
theorem may be stated by saying that the set of continuous functions on [a, b]
is the uniform closure of the set of polynomials on [a, b].

7.29 Theorem Let B be the uniform closure of an algebra s# of bounded
functions. Then B is a uniformly closed algebra.

Proof If fe# and g € A, there exist uniformly convergent sequences
{/.},{g,} such that f, >/, g,—>g and f, € &7, g, € &/. Since we are dealing
with bounded functions, it is easy to show that

fotan—f+9, Sfugu—fa, o,

where ¢ is any constant, the convergence being uniform in each case.
Hence f+g € B, fg € &, and ¢f € #, so that & 1s an algebra.
By Theorem 2.27, 4 is (uniformly) closed.
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7.30 Definition Let o/ be a family of functions on a set E. Then .« is said
to separate points on E if to every pair of distincts point x,, x, € E there corre-
sponds a function f € o/ such that f(x,) # f(x,).

If to each x € E there corresponds a function g € & such that g(x) # 0,
we say that o vanishes at no point of E.

The algebra of all polynomials in one variable clearly has these properties
on R!'. An example of an algebra which does not separate points is the set of
all even polynomials, sayon [—1, 1], since f(—x) = f(x) for every even function f.

The following theorem will illustrate these concepts further.

7.31 Theorem Suppose </ is an algebra of functions on a set E, o/ separates
points on E, and of vanishes at no point of E. Suppose x,, x, are distinct points
of E, and c,, c, are constants (real if o/ is a real algebra). Then sf contains a
Sfunction f such that

S(xy) = ¢y, f(xz2) =c;.

Proof The assumptions show that o/ contains functions g, h, and k
such that

g(x,) # g(x2), h(x,) # 0, k(x,;) # 0.

Put
u=gk—g(x)k, v=gh-—g(x))h.

Then u € o, v € A, u(x,) = v(x,) =0, u(x,) # 0, and v(x,;) # 0. Therefore

Cy0 coU
+
v(x;)  u(x;)

f =
has the desired properties.

We now have all the material needed for Stone’s generalization of the
Weierstrass theorem.

7.32 Theorem Let of be an algebra of real continuous functions on a compact
set K. If of separates points on K and if s/ vanishes at no point of K, then the
uniform closure B of </ consists of all real continuous functions on K.

We shall divide the proof into four steps.

STEP | Iff€ R, then |f| € B.
Proof Let
(52) a=sup |f(x)] (x € K)



(33)
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and let ¢ >0 be given. By Corollary 7.27 there exist real numbers
Cy, ..., Cy, Such that

<Ee¢ (—a<y<a).

.Zlci}’i — |yl

Since £ is an algebra, the function

g=zcifi

i=1

is a member of 4. By (52) and (53), we have

l9(x) = /()| <e  (xeK).
Since # is uniformly closed, this shows that |f| € .

STEP 2 Iffe 2 and g € 8, then max(f,g) € Z and min (f, g) € 8.

By max (f, g) we mean the function /4 defined by

i) = g,
M) =19G)  if7(x) < g(x)

and min (f, g) is defined likewise.

Proof Step 2 follows from step 1 and the identities
+ —_
f+g /-9l

max (£, 9) = — 5
min(f,g)=f;g— |f'2‘9|.

By iteration, the result can of course be extended to any finite set
of functions: If f}, ..., f, € #, then max (f,, ..., f,) € %, and

min (f, ..., f,) € &.

STEP 3 Given a real function f, continuous on K, a point x € K, and € > 0, there
exists a function g, € # such that g, (x) = f(x) and

4

(55)

9:()>f(t)—¢  (teK).

Proof Since of =« # and & satisfies the hypotheses of Theorem 7.31 so
does #. Hence, for every y € K, we can find a function A, € Z such that

h(x)=/(x), h»)=f0).
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(56)

(57)

By the continuity of h, there exists an open set J,, containing y,
such that

h(t) > f(t) —¢ (teJ).
Since K is compact, there is a finite set of points y,, ..., y, such that

KcJ,, u--ulJ, .

Put
g.=max(h, ,..., h).

By step 2, g € 4, and the relations (55) to (57) show that g, has the other
required properties.

STEP 4 Given a real function f, continuous on K, and € > 0, there exists a function
h € B such that

(58)

lh(x) — f(x)| <& (x € K).

Since 4 is uniformly closed, this statement is equivalent to the conclusion

of the theorem.

(39)

(60)

(61)

(62)

Proof Let us consider the functions g,, for each x € K, constructed in
step 3. By the continuity of g,, there exist open sets V, containing x,
such that

g() <fl)+e (teV).

Since K is compact, there exists a finite set of points x,, ..., x,,

such that
KcV,u-—-uV

Put
h=min(g,,,...,9x,)
By step 2, h € 4, and (54) implies
h() > f()—e  (teK),
whereas (59) and (60) imply
h(t) < f(t) + ¢ (t € K).
Finally, (58) follows from (61) and (62).
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Theorem 7.32 does not hold for complex algebras. A counterexample is

given in Exercise 21. However, the conclusion of the theorem does hold, ¢ven
for complex algebras, if an extra condition is imposed on &/, namely, that o/
be self-adjoint. This means that for every f € o its complex conjugate f must

also belong to &/ ; f is defined by f(x) = f(x).

7.33 Theorem Suppose </ is a self-adjoint algebra of complex continuous
functions on a compact set K, o/ separates points on K, and of vanishes at no
point of K. Then the uniform closure # of < consists of all complex continuous
Sfunctions on K. In other words, o is dense €(K).

Proof Let o/ be the set of all real functions on K which belong to «/.

If fe o and f= u + iv, with u, v real, then 2u = f + f, and since &/
is self-adjoint, we see that u e &/;. If x; # x,, there exists f € o/ such
that f(x,) =1, f(x,) =0; hence 0 = u(x,) # u(x,) = 1, which shows that
o p separates points on K. If x € K, then g(x) # 0 for some g € &/, and
there is a complex number /2 such that Ag(x) >0; if f=2g,f=u+ iv, it
follows that u(x) > 0; hence &/ vanishes at no point of K.

Thus &7/ satisfies the hypotheses of Theorem 7.32. It follows that
every real continuous function on K lies in the uniform closure of &/,
hence lies in #. If fis a complex continuous function on K, f= u +iv,
then u e @, v € #, hence f € 4. This completes the proof.

EXERCISES

1.

2.

Prove that every uniformly convergent sequence of bounded functions is uni-
formly bounded.
If {f»} and {g.} converge uniformly on a set E, prove that {f, + g.} converges
uniformly on E. If, in addition, {f,} and {g.} are sequences of bounded functions,
prove that { f.g.} converges uniformly on E.
Construct sequences {f.}, {g.} which converge uniformly on some set E, but such
that {f,g.} does not converge uniformly on E (of course, {f.g,} must converge on
E).
Consider
© 1
f(x)= X

n=11+n2x.

For what values of x does the series converge absolutely? On what intervals does
it converge uniformly? On what intervals does it fail to converge uniformly ? Is /
continuous wherever the series converges ? Is f bounded ?
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S.

Let

., 1 1
Solx) = {sin* (n+1 SXSZ)’

o (=)

Show that {f,} converges to a continuous function, but not uniformly. Use the
series X f, to show that absolute convergence, even for all x, does not imply uni-
form convergence.

Prove that the series

x4+ n

[~ o}
_ 1)y
n=zl( ) nz
converges uniformly in every bounded interval, but does not converge absolutely
for any value of x.

Forn=1,2,3,..., x real, put

X
1 + nx?

Sa(x) =

Show that { f,} converges uniformly to a function f, and that the equation

f(x) = lim fo(x)

n—- o0

is correct if x % 0, but false if x =0,
If

_J0 (x<0),
’(")—{1 (x> 0),

if {x.} is a sequence of distinct points of (a, b), and if £|c.| converges, prove that
the series

fo) = if" Ix—x) (a<x<b)

converges uniformly, and that f is continuous for every x # x,.
Let {f.} be a sequence of continuous functions which converges uniformly to a
function fon a set E. Prove that

lim fa(xa) = f(x)

n—» a0

for every sequence of points x, € E such that x, — x, and x € E. Is the converse of
this true?




10.

11.

12.

13.
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Letting (x) denote the fractional part of the real number x (see Exercise 16, Chap. 4,
for the definition), consider the function

(nx)
n2

f(x)= ”El (x real).
Find all discontinuities of f, and show that they form a countable dense set.
Show that f is nevertheless Riemann-integrable on every bounded interval.
Suppose {/.}, {g.} are defined on E, and
(@) X f, has uniformly bounded partial sums;
() g» — 0 uniformly on E;
(¢) 9:(x) >ga(x) >gs(x) > for every x € E.

Prove that £ f.g. converges uniformly on E. Hint: Compare with Theorem
3.42.
Suppose g and f,(n =1, 2, 3, ...) are defined on (0, o), are Riemann-integrable on

[+, T] whenever 0 <t < T < oo, | fo| <g,f. —f uniformly on every compact sub-
set of (0, o), and

ng(x) dx < o0,

Prove that

n-+ oo

im [ £ dx = j " £0x) dx.

(See Exercises 7 and 8 of Chap. 6 for the relevant definitions.)

This is a rather weak form of Lebesgue’s dominated convergence theorem
(Theorem 11.32). Even in the context of the Riemann integral, uniform conver-
gence can be replaced by pointwise convergence if it is assumed that f€ Z£. (See
the articles by F. Cunningham in Marth. Mag., vol. 40, 1967, pp. 179-186, and
by H. Kestelman in Amer. Math. Monthly, vol. 77, 1970, pp. 132-187.)

Assume that {f,} is a sequence of monotonically increasing functions on R' with
0 < f.(x) <1 for all x and all .
(a) Prove that there is a function fand a sequence {n,:} such that

S(x)= ,!L"l Juu(x)

for every x € R'. (The existence of such a pointwise convergent subsequence is
usually called Helly’s selection theorem.)
(b) If, moreover, fis continuous, prove that f,, — f uniformly on R'.

Hint: (i) Some subsequence { f,;} converges at all rational points r, say, to
f(r). (ii) Define f(x), for any x € R', to be sup f(r), the sup being taken over all
r < x. (iii) Show that f,,(x) —f(x) at every x at which f is continuous. (This is
where monotonicity is strongly used.) (iv) A subsequence of {f,} converges at
every point of discontinuity of f since there are at most countably many such
points. This proves (a). To prove (b), modify your proof of (iii) appropriately.
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14.

15.

16.

17.

18.

19.

Let f be a continuous real function on R' with the following properties:
0<f() <1, f(t+2)=f(¢) for every t, and

0 (E4E))

=1, G<t<1).

Put ®(¢) = (x(¢), y(¢)), where

X()=$27FGU), v =327 (3.

Prove that @ is continuous and that ® maps I = [0, 1] onto the unit square /> < R?2,
If fact, show that ® maps the Cantor set onto I2.
Hint: Each (xo, yo) € I? has the form

o ®
X0=22_"02n-1, )’o=22-"02n
n=1 n=1

where each a; isO or 1. If

> 7]

lo = Z 3_‘—1(20,')

i=1

show that f(3*t0) = a\, and hence that x(t0) = xo, y(to) = Yo .

(This simple example of a so-called ‘‘space-filling curve” is due to I. J.
Schoenberg, Bull. A.M.S., vol. 44, 1938, pp. 519.)
Suppose f'is a real continuous function on R}, f,(t) =f(nt) forn=1,2,3, ..., and
{f.} is equicontinuous on [0, 1]. What conclusion can you draw about f?
Suppose { f.} is an equicontinuous sequence of functions on a compact set X, and
{ f.} converges pointwise on K. Prove that { f,} converges uniformly on X.
Define the notions of uniform convergence and equicontinuity for mappings into
any metric space. Show that Theorems 7.9 and 7.12 are valid for mappings into
any metric space, that Theorems 7.8 and 7.11 are valid for mappings into any
complete metric space, and that Theorems 7.10, 7.16, 7.17, 7.24, and 7.25 hold for
vector-valued functions, that is, for mappings into any R*.
Let {f.} be a uniformly bounded sequence of functions which are Riemann-inte-
grable on [a, b], and put

R = fiydt  (@a<x<b)

Prove that there exists a subsequence {F,,} which converges uniformly on [a, b].
Let K be a compact metric space, let S be a subset of ¥(K). Prove that S is compact
(with respect to the metric defined in Section 7.14) if and only if S is uniformly
closed, pointwise bounded, and equicontinuous. (If S is not equicontinuous,
then S contains a sequence which has no equicontinuous subsequence, hence has
no subsequence that converges uniformly on K.)



. 20,

21.

22

23.
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If fis continuous on [0, 1] and if
1
j fOx"dx=0 (n=0,1,2,...),
o)

prove that f(x) =0 on [0, 1]. Hint: The integral of the product of f with any
1
polynomial is zero. Use the Weierstrass theorem to show that f o f3(x)dx =0.

Let K be the unit circle in the complex plane (i.e., the set of all z with |z| = 1), and
let & be the algebra of all functions of the form

N
f(e') =3 cqe'"® (0 real).
n=0

Then & separates points on K and .7 vanishes at no point of K, but nevertheless

there are continuous functions on K which are not in the uniform closure of &.
Hint: For every fe &/

27
f F(e'%)e'® df = 0,
0

and this is also true for every f in the closure of /.
Assume f € #(«) on [a, b], and prove that there are polynomials P, such that

.b
lim J | f— Pa|? da = 0.

n-— oo a

(Compare with Exercise 12, Chap. 6.)
Put P, = 0, and define, for n=0,1,2, ...,

x? — P3(x)

Poyi(x) = Po(x) + )

Prove that

lim P.(x)=|x]|,

n— %

uniformly on [— 1, 1].
(This makes it possible to prove the Stone-Weierstrass theorem without first
proving Theorem 7.26.)
Hint: Use the identity
| x| + Pa(x)

|x|—Pn+1(x)=[|x|—P,.(x)][l—- o ]

to prove that 0 << P,(x) < P, (x) < |x]| if | x| <1, and that

| x| — Pa(x) < |x|( — I_)_c_l)" < 2

2 n+ 1

if |x| <1.
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24. Let X be a metric space, with metric d. Fix a point a € X. Assign to each pe X

25.

the function f, defined by
fo(x) =d(x,p) —d(x,a) (xeX).

Prove that | f,(x)| < d(a, p) for all x € X, and that therefore f, € €(X).
Prove that

”fp _f;“ = d(P, Q)

for all p, g € X.

If ®(p) = f,, it follows that @ is an isometry (a distance-preserving mapping)
of X onto ®(X) < €(X).

Let Y be the closure of ®(X)in €(X). Show that Y is complete.

Conclusion: X is isometric to a dense subset of a complete metric space Y.
(Exercise 24, Chap. 3 contains a different proof of this.)
Suppose ¢ is a continuous bounded real function in the strip defined by
0<x<1, —o <y< o. Prove that the initial-value problem

y=¢xy), y0=c

has a solution. (Note that the hypotheses of this existence theorem are less stringent
than those of the corresponding uniqueness theorem; see Exercise 27, Chap. 5.)

Hint: Fix n. Fori=0, ..., n, put x;, = i/n. Let f, be a continuous function
on [0, 1] such that £,(0) = c,

f;(t)=¢(xl,f;1(xl)) ifxl <t<xl+l’
and put

An(t) =f’;(t) — (ﬁ(t’ f;l(t))a

except at the points x;, where A,(¢) =0. Then

ful)=c+ f [6(2, £,(5)) + An(0)] d.

Choose M < o so that |¢| < M. Verify the following assertions.

@) |fal| <M, |A)| <2M, A, € R, and | fo]| < |c| + M = M,, say, on [0, 1], for
all n.

(b) {fa} is equicontinuous on [0, 1], since | f.| < M.

(c¢) Some {f,,} converges to some f, uniformly on [0, 1].

(d) Since ¢ is uniformly continuous on the rectangle 0 < x <1, |y| < M,,

¢, fu(2)) = &(2, £(2))

uniformly on [0, 1].
(e) A,(¢) =0 uniformly on [0, 1], since

Ax(t) = ¢(xi, fa(x1)) — S(2, fo(1))

in (Xt ’ Xt+1)-



26.
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(f) Hence

fO) =c+ [ $(e, 1) ar

This fis a solution of the given problem.
Prove an analogous existence theorem for the initial-value problem

y = ®(x,y), Yy =c,

where now ¢ € R*, y € R*, and & is a continuous bounded mapping of the part of
R*+' defined by 0 < x <1,y € R* into R*. (Compare Exercise 28, Chap. 5.) Hint:
Use the vector-valued version of Theorem 7.25.



3

SOME SPECIAL FUNCTIONS

POWER SERIES

In this section we shall derive some properties of functions which are represented
by power series, i.e., functions of the form

(1 f3)= Y e

or, more generally,
o0

(2) S(x) =3 culx —a).

A=0

These are called analytic functions.

We shall restrict ourselves to real values of x. Instead of circles of con-
vergence (see Theorem 3.39) we shall therefore encounter intervals of conver-
gence.

If (1) converges for all x in (— R, R), for some R >0 (R may be + 00),
we say that fis expanded in a power series about the point x = 0. Similarly, if
(2) converges for |x — a| < R, fis said to be expanded in a power series about
the point x == a. As a matter of convenience, we shall often take a = 0 without
any loss of generality.
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8.1 Theorem Suppose the series

3) S ¢, x"

converges for | x| < R, and define

4 f) =Y ax  (xI<R.

Then (3) converges uniformly on [— R + ¢, R — €], no matter which ¢ > 0
is chosen. The function [ is continuous and differentiable in (— R, R), and

5) fi(x) = ilnc,. =1 (x| <R).

Proof Let ¢ > 0 be given. For |x| < R — ¢, we have
| x"| < |c(R—€)"[;
and since
2c, (R —¢)"

converges absolutely (every power series converges absolutely in the
interior of its interval of convergence, by the root test), Theorem 7.10
shows the uniform convergence of (3) on [—-R + ¢, R — ¢€].

. /7
Since \/n—1 as n— o0, we have

lim sup \”/n_I—c;I =lim sup ¥/ |c,|,

n—oc n—aoc

so that the series (4) and (5) have the same interval of convergence.

Since (5) i1s a power series, it converges uniformly in [— R + g,
R — €], for every ¢ > 0, and we can apply Theorem 7.17 (for series in-
stead of sequences). It follows that (5) holds if |x| < R —e.

But, given any x such that |x| < R, we can find an ¢ > 0 such that
|x| < R — &. This shows that (5) holds for | x| < R.

Continuity of / follows from the existence of f* (Theorem 5.2).

Corollary Under the hypotheses of Theorem 8.1, [ has derivatives of all
orders in (— R, R), which are given by

(o 0]

(6) fOx)y=>nmn—-1)-(n—k+ ), x"*

n=k
In particular,

(7 fO0)=kle, (k=0,1,2,...).
(Here f(® means f, and f® is the kth derivative of f, for k = 1, 2, 3, Cal)
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Proof Equation (6) follows if we apply Theorem 8.1 successively to f,
/' f" .... Putting x = 0 in (6), we obtain (7).

Formula (7) is very interesting. It shows, on the one hand, that the
coefficients of the power series development of f are determined by the values
of f and of its derivatives at a single point. On the other hand, if the coefficients
are given, the values of the derivatives of / at the center of the interval of con-
vergence can be.read off immediately from the power series.

Note, however, that although a function f may have derivatives of all
orders, the series Zc, x", where ¢, is computed by (7), need not converge to f(x)
for any x # 0. In this case, f cannot be expanded in a power series about x = 0.
For if we had f(x) = Xa, x", we should have

nla, = f"(0);

hence a, = c¢,. An example of this situation is given in Exercise 1.

If the series (3) converges at an endpoint, say at x = R, then fis continuous
not only in (— R, R), but also at x = R. This follows from Abel’s theorem (for
simplicity of notation, we take R = 1):

8.2 Theorem Suppose Xc, converges. Put

f(x)=§c,,x" (-1l <x<]).

Then

(8) Iim f(x) = ioc,,.

x—1

Proof Lets,=co+ - +¢,,5_; =0. Then

1

m m-—
X" =) (S5, = 8- )X"=(1—x)) 5, x" + 5, x™
n=0 n=0

M3

n=0

For [x| <1, we let m = o0 and obtain

© f6) ==Y 5,x"

Suppose s = lim s,. Let ¢ > 0 be given. Choose N so that n > N

n—0

implies

€
IS—S,,I <§'
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Then, since

a—n§ﬂ=1 (Ix] < 1),

we obtain from (9)

) = sl = [ =03 (- 90| <A =0 Y L5, —sl[x]"+ 2 <e

if x > 1 — 9, for some suitably chosen é > 0. This implies (8).

As an application, let us prove Theorem 3.51, which asserts: If Za,, 2b,,
Xc,, converge to A, B, C, and if c, = agb, + - + a,by, then C = AB. We let

f0)=Yax,  g)=Y5¥ =Y ex,

for 0 < x < 1. For x <1, these series converge absolutely and hence may be
multiplied according to Definition 3.48; when the multiplication is carried out,
we see that

(10) J(x)-g(x)=h(x) (O0<x<]).
By Theorem 8.2,
(11) f(x)>A, gx)->B,  hx)->C

as x — 1. Equations (10) and (11) imply AB = C.
We now require a theorem concerning an inversion in the order of sum-
mation. (See Exercises 2 and 3.)

8.3 Theorem Given a double sequence {a;;}, i=1,2,3,...,j=1,2,3, ...
suppose that

(12) ‘Z la;|=b, (=1,23,..)

and b, converges. Then

(13) 2 i ia,-j.

J=1i=1

II[\/]S

Proof We could establish (13) by a direct procedure similar to (although
more involved than) the one used in Theorem 3.55. However, the following
method seems more interesting.
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Let E be a countable set, consisting of the points x,, x;, X5, ..., and
suppose x, = Xy as n = 0. Define

(14) Sfi(xo) = .Zla,-j i=1,2,3,..)),
(15 fix,) = _i a;; (i,n=123,..)),
(16 960 =3 fi)  (xeb).

Now, (14) and (15), together with (12), show that each f; is con-

tinuous at x,. Since |fi(x)| < b; for x € E, (16) converges uniformly, so
that g 1s continuous at x, (Theorem 7.11). It follows that

{Z i a; = .;ilf:(xo) = g(xo) = lim g(x,)

i=1j=1

n— oc
. o 0] ) ac n
= Ilmz filx)) =1lim Y Y a;
n—ci= 1 n—wo i=1 j=1
. n [o o} [o o} o0
im S Sa,=5 Sa,
n—-o0 j=1i=1 Jj=1i=1

8.4 Theorem Suppose

1) = ¥ 6"

the series converging in |x| < R. If —R <a < R, then f can be expanded in a
power series about the point x = a which converges in |x —a| < R — |a|, and

o ¢(n)
(17) =3 ap (x-al<R-lal)

=0 n!

This 1s an extension of Theorem 5.15 and is also known as Taylor’s
theorem.

Proof We have

Q0

= i C, i (n\ a~"(x —a)"
=y [f (”\ c,,a""'"] (x — a)".
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This is the desired expansion about the point x = a. To prove its validity,
we have to justify the change which was made in the order of summation.
Theorem 8.3 shows that this is permissible if

(18) 55 e (:1) e — a

n=0m=0
converges. But (18) is the same as

(19) [cal - (| x —al +|a])",

ie

n

and (19) converges if |x —a| + |a| < R.
Finally, the form of the coefficients in (17) follows from (7).

It should be noted that (17) may actually converge in a larger interval than
the one given by |x —a| < R - |a].

If two power series converge to the same function in (— R, R), (7) shows
that the two series must be identical, 1.e., they must have the same coefficients.
It is interesting that the same conclusion can be deduced from much weaker
hypotheses:

8.5 Theorem Suppose the series Xa,x" and Xb,x" converge in the segment
S=(—R.R). Let E be the set of all x € S at which

(20) Y a,x"=)Y b, x".

n=0 n=0
if E has a limit point in S, then a, = b, forn =0, 1, 2, .... Hence (20) holds for
all x € S.

Proof Putc¢,=a,— b, and

(21) f(x) = ioc,, x" (x € S).

Then f(x) = 0 on E.

Let A be the set of all limit points of £1n S, and let B consist of all
other points of S. It is clear from the definition of *‘limit point” that B
is open. Suppose we can prove that A4 is open. Then 4 and B are disjoint
open sets. Hence they are separated (Definition 2.45). Since S = A4 U B,
and S is connected, one of A and B must be empty. By hypothesis, A4 is
not empty. Hence B is empty, and A = S. Since f is continuous in S,
Ac E. Thus E= S, and (7) shows that ¢, =0 forn =0, 1, 2, ..., which
is the desired conclusion.
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Thus we have to prove that 4 is open. If x, € A, Theorem 8.4 shows
that

22 )= 3 dyx = xo"  (1x = x| < R= | o))

We claim that d, = O for all n. Otherwise, let kK be the smallest non-
negative-integer. such that d, # 0. Then

(23) f(x)=(x—=x0)9(x)  (Jx = xo|l <R —=]x0]),
where
24) 90x) = Y, dhsnlx = xo)"

Since g is continuous at x, and

g(xo) = d, #0,

there exists a 6 > 0 such that g(x) #0 if |x — x,| < d. It follows from
(23) that f(x) #0if 0 < |x — xo| < 8. But this contradicts the fact that
X 1s a limit point of E.

Thus d, = 0 for all n, so that f(x) = O for all x for which (22) holds,
i.e., in a neighborhood of x,. This shows that 4 is open, and completes
the proof.

THE EXPONENTIAL AND LOGARITHMIC FUNCTIONS
We define

25) B =Y 5

The ratio test shows that this series converges for every complex z. Applying
Theorem 3.50 on multiplication of absolutely convergent series, we obtain

® LMo M oC n zkwn-k
E(Z)E(M _—‘"Z:O;;mgom: Z & Ok'(n—k)'

2 1 (+ )"

PN R iy

which gives us the important addition formula
(26) E(z+ w) = E(2)E(w) (z, w complex).
One consequence is that

27) EQ@QE(—2)=E(z—2)=F@0)=1 (z complex).
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I'his shows that E(z) # O for all z. By (25), E(x) > 0 if x > 0; hence (27) shows
that E(x) > O for all real x. By (25), E(x) - + o0 as x - + o0 ; hence (27) shows
that E(x) -0 as x - — oo along the real axis. By (25), 0 < x < y implies that
E(x) < E(y); by (27), it follows that E(—y) < E(—x); hence E is strictly in-
creasing on the whole real axis.

The addition formula also shows that

E(z + ) — E(z) _ E(h) -1

(28) lim E(z)lim = E(2);
h=0 h h=0 h
the last equality follows directly from (25).
Iteration of (26) gives
(29) E(Zl + t e + Zﬂ) - E(Zl) ¢ E(Z").
Let us take z; = --- =z, = 1. Since E(1) = e, where e i1s the number defined
in Definition 3.30, we obtain
(30) E(n)=¢" (n=1,2,3,...).
If p = n/m, where n, m are positive integers, then
(31) [E(p)]" = E(mp) = E(n) = €",
so that
(32) E(p) =€ (p > 0, p rational).

It follows from (27) that E(—p) = e P if p is positive and rational. Thus (32)
holds for all rational p.
In Exercise 6, Chap. 1, we suggested the definition

(33) x¥ = sup x?,

where the sup is taken over all rational p such that p < y, for any real y, and
x > 1. If we thus define, for any real x,

(34) e* = sup e’ (p < x, p rational),
the continuity and monotonicity properties of E, together with (32), show that
(35) E(x) = €~

for all real x. Equation (35) explains why E is called the exponential function.
The notation exp (x) is often used in place of e*, expecially when x is a
complicated expression.
Actually one may very well use (35) instead of (34) as the definition of e*;
(35) is a much more convenient starting point for the investigation of the
properties of e*. We shall see presently that (33) may also be replaced by a
more convenient definition [see (43)].
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We now revert to the customary notation, e*, in place of E(x), and sum-
marize what we have proved so far.

8.6 Theorem Let e be defined on R' by (35) and (25). Then
(a) € is continuous and differentiable for all x,
(b) () =e*;
(¢) €*isa strictly increasing function of x, and e* > 0;
(d) 7Y =e"e;
(e) > +mwasx—-> +0,e">0asx—> —0;
() lim,,, x"e * =0, for every n.

Proof We have already proved (a) to (e); (25) shows that

xn+l
e’ >
(n + 1)!
for x > 0, so that
n+1)!
x”e_x<( ) ’

X

and (f) follows. Part (f) shows that ¢* tends to + o0 *‘faster’’ than any
power of x, as x =& + 0.

Since E is strictly increasing and differentiable on R!, it has an inverse
function L which is also strictly increasing and differentiable and whose domain
is E(R"), that is, the set of all positive numbers. L is defined by

(36) E(LM)) =y (>0,

or, equivalently, by

(37) L(E(x))=x (x real).

Differentiating (37), we get (compare Theorem 5.5)
L'(E(x)) - E(x) = 1.

Writing y = E(x), this gives us

l
(38) L'(y) = 5 (y > 0).

Taking x =0 in (37), we see that L(1) = 0. Hence (38) implies

v d.
(39) L= (2

1 X
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Quite frequently, (39) is taken as the starting point of the theory of the logarithm
and the exponential function. Writing u = E(x), v = E(y), (26) gives

L(uv) = L(E(x) - E() = L(E(x + »)) = x + »,
so that
(40) L(uv) = L(u) + L(v) (u>0,v>0).

This shows that L has the familiar property which makes logarithms useful
tools for computation. The customary notation for L(x) is of course log x.
As to the behavior of log x as x - +00 and as x -0, Theorem 8.6(¢e)
shows that
log x = + 0 as x = + oo,

log x > — o0 as x = 0.
It is easily seen that
(41) x" = E(nL(x))

if x >0 and nis an integer. Similarly, if 72 is a positive integer, we have

(42) x!'m=F (’—:-1 L(x)),

since each term of (42), when raised to the mth power, yields the corresponding
term of (37). Combining (41) and (42), we obtain

(43) x* = E(xL(x)) = e*'°8*

for any rational «.

We now define x* for any real x and any x > 0, by (43). The continuity
and monotonicity of E and L show that this definition leads to the same result
as the previously suggested one. The facts stated in Exercise 6 of Chap. I, are
trivial consequences of (43).

If we differentiate (43), we obtain, by Theorem 5.5,

(44) (x*) = E(xL(x)) ; = ax* L.

Note that we have previously used (44) only for integral values of a, in which
case (44) follows easily from Theorem 5.3(b). To prove (44) directly from the
definition of the derivative, if x* is defined by (33) and « is irrational, is quite
troublesome.

The well-known integration formula for x* follows from (44) if « # —1,

and from (38) if « = —1. We wish to demonstrate one more property of log x,
namely,
(45) Iim x *logx=0

x—* 4+ o
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for every « > 0. That is, log x - + 00 “‘slower” than any positive power of x,
as x = + oo.
Forif0 < e<a,and x > 1, then

X X
x'“logx=x'“f t"‘dt<x““f 1tV dt
1 1

xE - 1 xe—a
* < )
& &

and (45) follows. We could also have used Theorem 8.6(f) to derive (49).

i 4

=X

THE TRIGONOMETRIC FUNCTIONS
Let us define

I 1
(46) C(x) = 5 [EGx) + E(=ix)],  SGx) = - [EGx) — E(=ix))

We shall show that C(x) and S(x) coincide with the functions cos x and sin x,
whose definition is usually based on geometric considerations. By (25), E(Z) =

_[-;‘Tz—). Hence (46) shows that C(x) and S(x) are real for real x. Also,
(47) E(ix) = C(x) + iS(x).

Thus C(x) and S(x) are the real and imaginary parts, respectively, of E(ix), if
x is real. By (27),

| E(ix)|* = E(ix)E(ix) = E(ix)E(—ix) = 1,

so that
(48) |E(ix)| =1 (x real).

From (46) we can read off that C(0) =1, S(0) =0, and (28) shows that
(49) C'(x) = —S(x), S'(x) = C(x).

We assert that there exist positive numbers x such that C(x) = 0. For
suppose this is not so. Since C(0) =1, it then follows that C(x) > 0 for all
x > 0, hence S'(x) > 0, by (49), hence S is strictly increasing; and since S(0) = 0,
we have S(x) > 0i1f x > 0. Hence if 0 < x < y, we have

(50) Sy — x) < fyS(t) dt = C(x) — C(y) < 2.

The last inequality follows from (48) and (47). Since S(x) > 0, (50) cannot be
true for large y, and we have a contradiction.
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Let x, be the smallest positive number such that C(x,) = 0. This exists,
since the set of zeros of a continuous function is closed, and C(0) #0. We
define the number & by

(S1) = 2X,.

Then C(n/2) =0, and (48) shows that S(n/2) = +1. Since C(x) >0 in
(0, #/2), S 1s increasing in (0, n/2); hence S(n/2) = 1. Thus

E(ni) )
— ) =1
2 b

and the addition formula gives

(52) E(rni)= —1, EQni)=1;
hence
(53) E(z 4+ 2ni) = E(2) (z complex).

8.7 Theorem

(@) The function E is periodic, with period 2ni.

(b) The functions C and S are periodic, with period 2.

(c) If0O<t<2n, then E(it) # 1.

(d) If z is a complex number with |z| =1, there is a unique t in [0, 27)
such that E(it) = z.

Proof By (53), (@) holds; and (b) follows from (a) and (46).

Suppose 0 < t < n/2 and E(it) = x + iy, with x, yreal. Our preceding
work shows that 0 < x <1, 0 <y < 1. Note that

E@4it) = (x + ip)* = x* — 6x%y? + y* + dixy(x* — y?).

If E(4it) is real, it follows that x2 — y?> = 0; since x* + y? =1, by (48),
we have x2 = y2 =1, hence E(4it) = —1. This proves (c).
If0<t <t, <2n, then

E(ity)[E(it)]™! = E(it; — ity) #1,

by (¢). This establishes the uniqueness assertion in (d).

To prove the existence assertion in (d), fix z so that [z| = 1. Write
z=Xx + iy, with x and y real. Suppose first that x >0 and y > 0. On
[0, /2], C decreases from 1 to 0. Hence C(¢) = x for some t € [0, 7/2].
Since C?> + S?2 =1 and S >0 on [0, n/2), it follows that z = E(it).

If x <0 and y = 0. the preceding conditions are satisfied by —iz.
Hence —iz = E(it) for some t € [0, n/2], and since i = E(mi/2), we obtain
z = E(@i(t + n/2)). Finally, if y <0, the preceding two cases show that
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—z = E(it) for some t € (0, 1). Hence z = — E(it) = E(i(t + m)).
This proves (d), and hence the theorem.

It follows from (d) and (48) that the curve y defined by
(54) y(t) = E(it) 0<t<2n)

is a simple closed curve whose range is the unit circle in the plane. Since
y'(t) =iE(it), the length of y is
2

J

by Theorem 6.27. This is of course the expected result for the circumference of
a circle of radius 1. It shows that =, defined by (51), has the usual geometric
significance.

In the same way we see that the point y(¢) describes a circular arc of length
1o as t increases from O to 7,. Consideration of the triangle whose vertices are

|'(D)] dt = 2=,

zy =0, z, = Y(to), zy = C(t)

shows that C(¢) and S(¢) are indeed identical with cos ¢ and sin ¢, if the latter
are defined in the usual way as ratios of the sides of a right triangle.

It should be stressed that we derived the basic properties of the trigono-
metric functions from (46) and (25), without any appeal to the geometric notion
of angle. There are other nongeometric approaches to these functions. The
papers by W. F. Eberlein (Amer. Math. Monthly, vol. 74, 1967, pp. 1223-1225)
and by G. B. Robison (Math. Mag., vol. 41, 1968, pp. 66-70) deal with these
topics.

THE ALGEBRAIC COMPLETENESS OF THE COMPLEX FIELD

We are now in a position to give a simple proof of the fact that the complex
field is algebraically complete, that is to say, that every nonconstant polynomial
with complex coefficients has a complex root.

8.8 Theorem Suppose a,, ..., a, are complex numbers, n> 1, a, # 0,
P(z) =) az"
0

Then P(z) = 0 for some complex number z.

Proof Without loss of generality, assume g, = 1. Put
(595) pu = inf |P(2)| (z complex)

If |z| = R, then
(56) |P(z)| = R'[1 = |@,—y|R™" = -+ — [ao| R™").
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The right side of (56) tends to oo as R — oc0. Hence there exists R, such
that |P(z)| > pu if |z| > R,. Since |P| is continuous on the closed disc
with center at 0 and radius R,, Theorem 4.16 shows that |P(z,)| = u for
some z,.

We claim that u = 0.

If not, put Q(z) = P(z + z4)/P(zo). Then Q is a nonconstant poly-
nomial, Q(0) =1, and | @(z)| = 1 for all z. There is a smallest integer k,
1 < k < n, such that

(57) O(z)=1+bz"+ -+ +b,2", b, #0.
By Theorem 8.7(d) there is a real 0 such that
(58) e'*b, = — |by].

If r >0 and r*|b,| < 1, (58) implies
11 + b rke™®| =1 —r¥|b],
so that
| Q(re®)| < 1 = r¥{|by]| = rlbyss| = === = r"7¥|b,]}.

For sufficiently small r, the expression in braces is positive; hence
| O(re’®)| < 1, a contradiction.
Thus u = 0, that 1s, P(z,) = 0.

Exercise 27 contains a more general result.

FOURIER SERIES

8.9 Definition A trigonometric polynomial is a finite sum of the form

AI
(59) f(x) =ag + ) (a,cos nx + b, sin nx) (x real),
n=1
where a,, ..., ay, by, ..., by are complex numbers. On account of the identities

(46), (59) can also be written in the form

(60) f(x) = i c, e (x real),

which is more convenient for most purposes. It is clear that every trigonometric
polynomial is periodic, with period 2.

If n is a nonzero integer, ¢~ is the derivative of e*/in, which also has
period 2n. Hence

1 n
2n J_p

1 (if n = 0),

(61) d dx:{o (fn=+1, £2,..)
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Let us multiply (60) by e~ ™*, where m is an integer; if we integrate the
product, (61) shows that

(62) ¢, = -2-1; f _ f(xX)e™ ™ dx

for [m| < N. If |m| > N, the integral in (62) is O.

The following observation can be read off from (60) and (62): The
trigonometric polynomial f, given by (60), is real if and only if c_, = c. for
n=0,...,N.

In agreement with (60), we define a trigonometric series to be a series of
the form

(63) Y c,e™  (xreal);

the Nth partial sum of (63) is defined to be the right side of (60).

If f1s an integrable function on [—n, n], the numbers ¢,, defined by (62)
for all integers m are called the Fourier coefficients of f, and the series (63) formed
with these coefficients is called the Fourier series of f.

The natural question which now arises is whether the Fourier series of f
converges to f, or, more generally, whether /'is determined by its Fourier series.
That is to say, if we know the Fourier coefficients »f a function, can we find
the function, and if so, how?

The study of such series, and, in particular, the problem of representing a
given function by a trigonometric series, originated in physical problems such
as the theory of oscillations and the theory of heat conduction (Fourier’s
“Théorie analytique de la chaleur’ was published in 1822). The many difficult
and delicate problems which arose during this study caused a thorough revision
and reformulation of the whole theory of functions of a real variable. Among
many prominent names, those of Riemann, Cantor, and Lebesgue are intimately
connected with this field, which nowadays, with all its generalizations and rami-
fications, may well be said to occupy a central position in the whole of analysis.

We shall be content to derive some basic theorems which are easily
accessible by the methods developed in the preceding chapters. For more
thorough investigations, the Lebesgue integral is a natural and indispensable
tool.

We shall first study more general systems of functions which share a
property analogous to (61).

8.10 Definition Let {¢,} (n =1, 2, 3,...) be a sequence of complex functions
on [a, b], such that

b
(64) [ $:0)pm)dx =0 (n #m).




SOME SPECIAL FUNCTIONS 187

Then {¢,} is said to be an orthogonal system of functions on [a, b]. If, in addition,

(65) [ 102 dx =1

for all n, {¢,} is said to be orthonormal.
For example, the functions (27) *e¢™* form an orthonormal system on
[—n, n]. So do the real functions

] COS X SIin X COS 2x sSin 2x
T — > — > =y  °°
V27 \/n \/n \/n \/n

If {¢,} is orthonormal on [a, b] and if

(66) c, = f b fOe(dt  (n=1,2,3,..),

we call ¢, the nth Fourier coefficient of f relative to {¢,}. We write

[ o]

(67) J(x) ~ Z_ Cn Pn(x)
and call this series the Fourier series of f (relative to {¢,}).

Note that the symbol ~ used in (67) implies nothing about the conver-
gence of the series; it merely says that the coefficients are given by (66).

The following theorems show that the partial sums of the Fourier series
of f have a certain minimum property. We shall assume here and in the rest of
this chapter that fe .2, although this hypothesis can be weakened.

8.11 Theorem Let {¢p,} be orthonormal on [a, b]. Let

(68) Su(X) = ) Cou G ()
m=1
be the nth partial sum of the Fourier series of f, and suppose
(69) X) = 2 Yo D).
Then
b b
(70) [1f=sl?dcs [ 15— 1,2 dx,

and equality holds if and only if
(71) VP = Cpm m=1,...,n).

That is to say, among all functions 1,, s, gives the best possible mean
square approximation to f.
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Proof Let | denote the integral over [a, b], £ the sum from I to .

[f1a=[SE 0B = 3 Cuim

by the definition of {c,,},

flf,.i2 =ftnfn =fZ Y ®m D kb =Y | vml?

since {¢,,} 1s orthonormal. and so

J1f=1l?=

J

o/

IS
f

r‘

f

L%

= = [+ [ 102
2 — Z Co ;_'m - Z Em Ym + Z Tm fm

2 - Z lcn||2+ Z IYm_Cmizs

which is evidently minimized if and only if y,, = c,,,.

Putting y

. = Cn 1N this calculation, we obtain

b n b
(72) [1s0)12dx =3 Jeal? < [ |f()]? dx,

‘a

since [|f—¢,|> = 0.

1

8.12 Theorem If {¢,} is orthonormal on [a, b]. and if

F(0~ 3 cnd(x),
then
oy b ,
(73) Z] lea|? < f | f(x)]~ dx.
In particular,
(74) limc, = 0.

Then

Proof Letting n > 00 in (72), we obtain (73), the so-called ‘““Bessel

inequality.”

8.13 Trigonometric series From now on we shall deal only with the trigono-
metric system. We shall consider functions / that have period 27 and that are
Riemann-integrable on [—n, n] (and hence on every bounded interval). The
Fouriecr series of /'is then the series (63) whose coefficients ¢, are given by the

integrals (62), and

N
(75) W) = 5y(f ) = € e™
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is the Nth partial sum of the Fourier series of f. The inequality (72) now takes
the form

(76) =

N | n
I _NISN(X)Izdxz ;vlcnIZ S—f_nlf(x)lz dx.

2r

In order to obtain an expression for sy that is more manageable than (75)
we introduce the Dirichlet kernel

N sin(N+1
") Dn(x) = =Z—Nemx=snli(n (x/z>)x'

The first of these equalities is the definition of Dy(x). The second follows if
both sides of the identity

(eix _ I)DN(X) — ei(N+l)x _ e—iNx

are multiplied by e ™ **/2,

Bv (62) and (75), we have
N om P
W30 =3 5 f_uf(t)e dt e

_1 T 1 N in(x=1) 4
_Z_nf_,t (t);ve dt,

so that

| on I o
(78)  su(fix) = f_ () Dy(x = 1) di = = f_ f(x = )Dy(t) dt.

The periodicity of all functions involved shows that it is immaterial over which
interval we integrate, as long as its length is 2z. This shows that the two integrals
in (78) are equal.

We shall prove just one theorem about the pointwise convergence of
Fourier series.

8.14 Theorem If, for some x, there are constants 6 >0 and M < oo such that

(79) f(x+1)—f)]| < M|t
for all te (=0, d), then
(80) lim sy(f; x) = f(x).

Proof Define

(81) Jx—1) - f(x)

sin (¢/2)

g(t) =
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for 0 < |t| < m, and put g(0) = 0. By the definition (77),

1 n
ﬂf_nDN(.x) dx = 1.
Hence (78) shows that

s(fix)—f(x) = % fing(t) sin (N+ -;—)t dt

n

| t 1 t
=5 f_n [g(t) cos 5] sin Nt dt + o f [g(t) sin 5] cos Nt dt.

By (79) and (81), g(¢) cos (#/2) and g(¢) sin (¢/2) are bounded. The last
two integrals thus tend to 0 as N — oo, by (74). This proves (80).

Corollary If f(x) =0 for all x in some segment J, then im sy(f . x) =0 for
every x € J.

Here is another formulation of this corollary:
If f(t) =g(t) for all t in some neighborhood of x, then
Sn(f5 x) — sa(g; x) = sa(f —g; x) >0as N - oo.

This is usually called the /localization theorem. It shows that the behavior
of the sequence {sy(/; x)}, as far as convergence is concerned, depends only on
the values of f in some (arbitrarily small) neighborhood of x. Two Fourier
series may thus have the same behavior in one interval, but may behave in
entirely different ways in some other interval. We have here a very striking
contrast between Fourier series and power series (Theorem 8.5).

We conclude with two other approximation theorems.

8.15 Theorem If f is continuous (with period 2n) and if € > 0, then there is a
trigonometric polynomial P such that

|P(x) — f(x)| < &

for all real x.

Proof If we identify x and x + 27, we may regard the 2n-periodic func-
tions on R! as functions on the unit circle T, by means of the mapping
x = ¢'*. The trigonometric polynomials, i.e., the functions of the form
(60), form a self-adjoint algebra /. which separates points on 7, and
which vanishes at no point of 7. Since T is compact, Theorem 7.33 tells
us that o7 i1s dense in (7). This is exactly what the theorem asserts.

A more precise form of this theorem appears in Exercise 15.
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8.16 Parseval’s theorem Suppose f and g are Riemann-integrable functions
with period 2n, and

(82) Sx)~ Y cpe™,  gx)~ Y e
Then
(83) lim — [ /() = sn(f3 )| dx =0,
N=o 2“ ‘' —-n

] n - x _
(84) 5; f_ nf(x)g(X) dx - —chn Vns
(85) — " el dx =Yl

27( - - "

Proof Let us use the notation
1 n 1/2

(36) il = {5z [ 4Gl dx)

Let £ > 0 be given. Since fe # and f(rn) = f(—n), the construction

described in Exercise 12 of Chap. 6 yields a continuous 2rn-periodic func-
tion s with

(87) /= hll, <e.

By Theorem 8.15, there is a trigonometric polynomial P such that

| h(x) — P(x)| <& for all x. Hence |h — P||, <e. If P has degree N,,
Theorem 8.11 shows that

(88) lh = sn(M)ll, < |h — P, <e
for all N> N,. By (72), with h — fin place of f,
(89) Isn(h) — sn() 2 = Isn(h =N, < lh = fll2 <e.

Now the triangle inequality (Exercise 11, Chap. 6), combined with
(87), (88), and (89), shows that

(90) If = sn(NNz2 <36 (N=N).
This proves (83). Next,
| on N I N
o1 | shgax=3% e 5[ emgadx=} .,

and the Schwarz inequality shows that

92) < [1r=suntal <{[15=5u1? [1a12] "

[13 = [swa
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which tends to 0, as N — oo, by (83). Comparison of (91) and (92) gives
(84). Finally, (85) is the special case g = f of (84).

A more general version of Theorem 8.16 appears in Chap. 11.

THE GAMMA FUNCTION

This function is closely related to factorials and crops up in many unexpected
places in analysis. Its origin, history, and development are very well described
in an interesting article by P. J. Davis (Amer. Math. Monthly, vol. 66, 1959,
pp. 849-869). Artin’s book (cited in the Bibliography) is another good elemen-
tary introduction.

Our presentation will be very condensed, with only a few comments after
each theorem. This section may thus be regarded as a large exercise, and as an
opportunity to apply some of the material that has been presented so far.

8.17 Definition For 0 < x < o0,

+ C

(93) I(x) = J >~ le~1 4.

0

The integral converges for these x. (When x < 1, both 0 and oo have to
be looked at.)

8.18 Theorem
(@) The functional equation

I'x+1)=xI'(x)

holds if 0 < x < 0.
b) Tm+1D)=n'forn=1,23,....
(¢) log I is convex on (0, oc).

Proof An integration by parts proves (a). Since I'(1) =1, (a) implies
(b), by induction. If 1 <p < w and (1/p) + (1/q) =1, apply Hoélder’s
inequality (Exercise 10, Chap. 6) to (93), and obtain

]‘(.{ +'¥.) < r(x)l/pr(y)l/q_
p q

This is equivalent to (c).

It is a rather surprising fact discovered by Bohr and Mollerup, that
these three properties characterize I' completely.



SOME SPECIAL FUNCTIONS 193

8.19 Theorem Iffis a positive function on (0, o) such that
(@ f(x+1)=xf(x),
b f1)=1,
(¢) logfis convex,

then f(x) = I'(x).

Proof Since I satisfies (a), (b), and (c), it is enough to prove that f(x) is
uniquely determined by (a), (b), (¢), for all x > 0. By (a), it is enough to
do this for x € (0, 1).

Put ¢ =logf. Then

(94) o(x + 1) = (x) + log x (0 < x < 0),

¢(1) =0, and ¢ is convex. Suppose 0 < x < 1, and n is a positive integer.

By (94), o(n + 1) = log(n!). Consider the difference quotients of ¢ on the

intervals [n,n+ 1], [n+ 1,n+ 1+ x], [n +1,n+ 2]. Since ¢ is convex
pon+1+x)—ep(n+1)

logn < - < log (n + 1).

Repeated application of (94) gives
o(n+1+x)=0¢@(x)+log[x(x+1):(x+ n)l
Thus

'n* 1
2 ]leog(l+-’;)-

0= ¢(x) - log [x(x+ 1)---(x+n)J

The last expression tends to 0 as » — c0. Hence ¢(x) is determined, and
the proof is complete.

As a by-product we obtain the relation

X

. nin
®3) rx) =lm )

at least when 0 < x < 1; from this one can deduce that (95) holds for all x > 0,
since I'(x + 1) = xI'(x).

820 Theorem Ifx>0andy >0, then

[
I'(x+y)

1
(96) JO *711 =ty ldr =

This integral is the so-called beta function B(x, y).



194 PRINCIPLES OF MATHEMATICAL ANALYSIS

Proof Note that B(l, y) = 1/y, that log B(x, y) is a convex function of
x, for each fixed y, by Holder’s inequality, as in Theorem 8.18, and that

X
(97) B(x + 1, y) = —— B(x, y).
X+Yy
To prove (97), perform an integration by parts on

B(x+1,y)= fl (——f—)x(l — )"t 1dr.

o \1 —1¢

These three properties of B(x, y) show, for each y, that Theorem 8.19
applies to the function f defined by

I
fy = 2O g,

I'(y)
Hence f(x) = I'(x).

8.21 Some consequences The substitution ¢ = sin? 6 turns (96) into

"2 _ _ I')I(y)
98 2 0)2*~1 (cos 0)>*~1 df = :
(98) | Gin0)**7* (cos 0 oty
The special case x = y = 1 gives
(99) r@) =/
The substitution ¢ = s? turns (93) into
(100) I'(x) = 2] s2* 1o~ ds (0 < x < ).
0
The special case x = 4 gives
(101) [ eds=n.
By (99), the identity
2x~1 + 1
(102) [(x) = = r(’-‘)r(x )
J= 1)\

follows directly from Theorem 8.19.

8.22 Stirling’s formula This provides a simple approximate expression for
I'(x + 1) when x is large (hence for n! when n is large). The formula is

(103) lim >+ 1D

— = 1.
x— o (x/e)" \/27IX
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Here is a proof. Put t = x(1 + u) in (93). This gives
(104) [(x + 1) = x**+1 e"‘f [(1 + w)e™ T du.
-1
Determine A(u) so that 4(0) = 1 and
.
(105) (1 + u)e " =exp [— ?h(u)]
if —1 <wu<oo,u#0. Then
2
(106) h(u) = 3 [u — log (1 + w)].

It follows that A is continuous, and that 4(uv) decreases monotonically from oo
to 0 as u increases from —1 to oo.

The substitution v = s \/27c turns (104) into
(107) M+ 1) = xe™*/2x [ ,(s)ds

where

exp[—sh(s /2/x)]  (—/x/2 <5< o),
0 (s < —/x/2).

Note the following facts about  (s):

ba(5) = |

(@) For every s, Y (s) - e % as x - 0.

(b) The convergence in (a) is uniform on [— A, A], for every A < co.
(c) When s <0, then 0 < i (s) < e™*".
(d) When s >0 and x > 1, then 0 < ,(s) < y,(s).

(e) [§ ¥i(s)ds < .

The convergence theorem stated in Exercise 12 of Chap. 7 can therefore

be applied to the integral (107), and shows that this integral converges to \/ n
as x = o0, by (101). This proves (103).

A more detailed version of this proof may be found in R. C. Buck’s
“Advanced Calculus,” pp. 216-218. For two other, entirely different, proofs,
see W. Feller’s article in Amer. Math. Monthly, vol. 74, 1967, pp. 1223-1225
(with a correction in vol. 75, 1968, p. 518) and pp. 20-24 of Artin’s book.

Exercise 20 gives a simpler proof of a less precise result.



196 PRINCIPLES OF MATHEMATICAL ANALYSIS

EXERCISES
1. Define

e~ (x#0),

)= {o (x = 0).

Prove that f has derivatives of all orders at x =0, and that f™(0) =0 for
n=1,23,....

2. Let a;, be the number in the ith row and jth column of the array

—1 0 0 0
3 —1 0 0
1 3 —1 0
3 1 3 —1
sO that
0 (i <j),
ay = —1 (l=j)a
2/t (i >))
Prove that
‘ijat_;:—z, Jzz‘a.-,—o

3. Prove that

if a;; >> 0 for all i and j (the case + c© = + c0 may occur).
4. Prove the following limit relati